Deutsch
 
Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

 
 
DownloadE-Mail
  ResoNet: Robust and Explainable ENSO Forecasts with Hybrid Convolution and Transformer Networks

Lyu, P., Tang, T., Ling, F., Luo, J.-J., Boers, N., Ouyang, W., Bai, L. (2024): ResoNet: Robust and Explainable ENSO Forecasts with Hybrid Convolution and Transformer Networks. - Advances in Atmospheric Sciences, 41, 1289-1298.
https://doi.org/10.1007/s00376-024-3316-6

Item is

Dateien

einblenden: Dateien
ausblenden: Dateien
:
Lyu_2024_2312.10429 (Preprint), 18MB
 
Datei-Permalink:
-
Name:
Lyu_2024_2312.10429
Beschreibung:
-
Sichtbarkeit:
Privat
MIME-Typ / Prüfsumme:
application/pdf
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-
Lizenz:
-

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Lyu, Pumeng1, Autor
Tang, Tao1, Autor
Ling, Fenghua1, Autor
Luo, Jing-Jia1, Autor
Boers, Niklas2, Autor              
Ouyang, Wanli1, Autor
Bai, Lei1, Autor
Affiliations:
1External Organizations, ou_persistent22              
2Potsdam Institute for Climate Impact Research, ou_persistent13              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: Recent studies have shown that deep learning (DL) models can skillfully forecast El Niño–Southern Oscillation (ENSO) events more than 1.5 years in advance. However, concerns regarding the reliability of predictions made by DL methods persist, including potential overfitting issues and lack of interpretability. Here, we propose ResoNet, a DL model that combines CNN (convolutional neural network) and transformer architectures. This hybrid architecture enables our model to adequately capture local sea surface temperature anomalies as well as long-range inter-basin interactions across oceans. We show that ResoNet can robustly predict ENSO at lead times of 19 months, thus outperforming existing approaches in terms of the forecast horizon. According to an explainability method applied to ResoNet predictions of El Niño and La Niña from 1- to 18-month leads, we find that it predicts the Niño-3.4 index based on multiple physically reasonable mechanisms, such as the recharge oscillator concept, seasonal footprint mechanism, and Indian Ocean capacitor effect. Moreover, we demonstrate for the first time that the asymmetry between El Niño and La Niña development can be captured by ResoNet. Our results could help to alleviate skepticism about applying DL models for ENSO prediction and encourage more attempts to discover and predict climate phenomena using AI methods.

Details

einblenden:
ausblenden:
Sprache(n): eng - Englisch
 Datum: 2024-05-242024-06-222024-07-01
 Publikationsstatus: Final veröffentlicht
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: Expertenbegutachtung
 Identifikatoren: DOI: 10.1007/s00376-024-3316-6
MDB-ID: No data to archive
PIKDOMAIN: RD4 - Complexity Science
Organisational keyword: RD4 - Complexity Science
Organisational keyword: FutureLab - Artificial Intelligence in the Anthropocene
Model / method: Machine Learning
Research topic keyword: Climate impacts
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Advances in Atmospheric Sciences
Genre der Quelle: Zeitschrift, SCI, Scopus
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: -
Seiten: - Band / Heft: 41 Artikelnummer: - Start- / Endseite: 1289 - 1298 Identifikator: CoNE: https://publications.pik-potsdam.de/cone/journals/resource/1861-9533
Publisher: Springer