Deutsch
 
Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Model adaptive phase space reconstruction

Dhadphale, J. M., Krämer, K.-H., Gelbrecht, M., Kurths, J., Marwan, N., Sujith, R. I. (2024): Model adaptive phase space reconstruction. - Chaos, 34, 7, 073125.
https://doi.org/10.1063/5.0194330

Item is

Dateien

einblenden: Dateien
ausblenden: Dateien
:
30029oa.pdf (Verlagsversion), 4MB
 
Datei-Permalink:
-
Name:
30029oa.pdf
Beschreibung:
-
Sichtbarkeit:
Privat (Embargo bis 2025-08-01)
MIME-Typ / Prüfsumme:
application/pdf
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-
Lizenz:
-

Externe Referenzen

einblenden:
ausblenden:
externe Referenz:
https://github.com/JayeshMD/MAPSR (Ergänzendes Material)
Beschreibung:
Code for the MAPSR method

Urheber

einblenden:
ausblenden:
 Urheber:
Dhadphale, Jayesh M.1, Autor
Krämer, Kai-Hauke2, Autor              
Gelbrecht, Maximilian2, Autor              
Kurths, Jürgen2, Autor              
Marwan, Norbert2, Autor              
Sujith, R. I.1, Autor
Affiliations:
1External Organizations, ou_persistent22              
2Potsdam Institute for Climate Impact Research, ou_persistent13              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: Phase space reconstruction (PSR) methods allow for the analysis of low-dimensional data with methods from dynamical systems theory, but their application to prediction models, such as those from machine learning (ML), is limited. Therefore, we here present a model adaptive phase space reconstruction (MAPSR) method that unifies the process of PSR with the modeling of the dynamical system. MAPSR is a differentiable PSR based on time-delay embedding and enables ML methods for modeling. The quality of the reconstruction is evaluated by the prediction loss. The discrete-time signal is converted into a continuous-time signal to achieve a loss function, which is differentiable with respect to the embedding delays. The delay vector, which stores all potential embedding delays, is updated along with the trainable parameters of the model to minimize prediction loss. Thus, MAPSR does not rely on any threshold or statistical criterion for determining the dimension and the set of delay values for the embedding process. We apply the MAPSR method to uni- and multivariate time series stemming from chaotic dynamical systems and a turbulent combustor. We find that for the Lorenz system, the model trained with the MAPSR method is able to predict chaotic time series for nearly seven to eight Lyapunov time scales, which is found to be much better compared to other PSR methods [AMI-FNN (average mutual information-false nearest neighbor) and PECUZAL (Pecora-Uzal) methods]. For the univariate time series from the turbulent combustor, the long-term cumulative prediction error of the MAPSR method for the regime of chaos stays between other methods, and for the regime of intermittency, MAPSR outperforms other PSR methods.

Details

einblenden:
ausblenden:
Sprache(n): eng - Englisch
 Datum: 2024-06-202024-07-102024-07-10
 Publikationsstatus: Final veröffentlicht
 Seiten: 22
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: Expertenbegutachtung
 Identifikatoren: DOI: 10.1063/5.0194330
PIKDOMAIN: RD4 - Complexity Science
Organisational keyword: RD4 - Complexity Science
Organisational keyword: FutureLab - Artificial Intelligence in the Anthropocene
Research topic keyword: Nonlinear Dynamics
Model / method: Machine Learning
MDB-ID: No MDB - stored outside PIK (see locators/paper)
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Chaos
Genre der Quelle: Zeitschrift, SCI, Scopus, p3
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: -
Seiten: - Band / Heft: 34 (7) Artikelnummer: 073125 Start- / Endseite: - Identifikator: CoNE: https://publications.pik-potsdam.de/cone/journals/resource/180808
Publisher: American Institute of Physics (AIP)