日本語
 
Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細

登録内容を編集ファイル形式で保存
 
 
ダウンロード電子メール
  Diagnosis of Early Mild Cognitive Impairment Based on Associated High-Order Functional Connection Network Generated by Multimodal MRI

Wang, W., Zhang, S., Wang, Z., Luo, X., Luan, P., Hramov, A., Kurths, J., He, C., & Li, J. (2024). Diagnosis of Early Mild Cognitive Impairment Based on Associated High-Order Functional Connection Network Generated by Multimodal MRI. IEEE Transactions on Cognitive and Developmental Systems, 16(2), 618-627. doi:10.1109/TCDS.2023.3283406.

Item is

基本情報

表示: 非表示:
資料種別: 学術論文

ファイル

表示: ファイル

関連URL

表示:

作成者

表示:
非表示:
 作成者:
Wang, Weiping, 著者
Zhang, Shunqi, 著者
Wang, Zhen, 著者
Luo, Xiong, 著者
Luan, Ping, 著者
Hramov, Alexander, 著者
Kurths, Jürgen1, 著者              
He, Chang, 著者
Li, Jianwu, 著者
所属:
1Potsdam Institute for Climate Impact Research, ou_persistent13              

内容説明

表示:
非表示:
キーワード: -
 要旨: Mild cognitive impairment (MCI) is highly likely to convert to Alzheimer’s disease (AD). The main approach to identifying MCI is using a functional connection network (FCN). Traditional FCN is used to study the correlation between two brain regions, but it lacks deeper brain interaction information. Neuroscientists found the internal functional activity pattern in the human brain is characterized by sparse, modular, and overlapping structures, and the FCN is restricted by the brain structural connection network (SCN). They can improve the estimation accuracy of FCN. Therefore, this article first constructs low order FCN (LFCN) based on brain sparse, modular, and overlapping activity patterns. Then, new high-order FCN (HFCN) is proposed based on the restrictive relationship between SCN and FCN. To combine high robustness of LFCN with high sensitivity of HFCN, a new combination strategy of LFCN and HFCN is proposed. It integrates the idea of brain modular and overlapping with the restricted relationship between SCN and FCN. Finally, the experimental results show that in early MCI (EMCI) recognition the best classification performance is acquired with an accuracy of 91.42%, which is better than similar methods. This method will be instrumental in the early recognition of clinical MCI.

資料詳細

表示:
非表示:
言語: eng - 英語
 日付: 2023-06-142024-04-01
 出版の状態: Finally published
 ページ: -
 出版情報: -
 目次: -
 査読: 査読あり
 識別子(DOI, ISBNなど): DOI: 10.1109/TCDS.2023.3283406
PIKDOMAIN: RD4 - Complexity Science
Organisational keyword: RD4 - Complexity Science
Research topic keyword: Complex Networks
Research topic keyword: Health
Research topic keyword: Nonlinear Dynamics
MDB-ID: No data to archive
 学位: -

関連イベント

表示:

訴訟

表示:

Project information

表示:

出版物 1

表示:
非表示:
出版物名: IEEE Transactions on Cognitive and Developmental Systems
種別: 学術雑誌, SCI, Scopus
 著者・編者:
所属:
出版社, 出版地: -
ページ: - 巻号: 16 (2) 通巻号: - 開始・終了ページ: 618 - 627 識別子(ISBN, ISSN, DOIなど): CoNE: https://publications.pik-potsdam.de/cone/journals/resource/2379-8920
Publisher: Institute of Electrical and Electronics Engineers (IEEE)