Deutsch
 
Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Learning interpretable collective variables for spreading processes on networks

Lücke, M., Winkelmann, S., Heitzig, J., Molkenthin, N., Koltai, P. (2024): Learning interpretable collective variables for spreading processes on networks. - Physical Review E, 109, 2, L022301.
https://doi.org/10.1103/PhysRevE.109.L022301

Item is

Dateien

einblenden: Dateien
ausblenden: Dateien
:
Lücke_2024_PhysRevE.109.L022301.pdf (Verlagsversion), 12MB
 
Datei-Permalink:
-
Name:
Lücke_2024_PhysRevE.109.L022301.pdf
Beschreibung:
-
Sichtbarkeit:
Privat
MIME-Typ / Prüfsumme:
application/pdf
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-
Lizenz:
-

Externe Referenzen

einblenden:
ausblenden:
externe Referenz:
https://doi.org/10.5281/zenodo.14161126 (Ergänzendes Material)
Beschreibung:
Code

Urheber

einblenden:
ausblenden:
 Urheber:
Lücke, Marvin1, Autor
Winkelmann, Stefanie2, Autor
Heitzig, Jobst1, Autor              
Molkenthin, Nora1, Autor              
Koltai, Péter2, Autor
Affiliations:
1Potsdam Institute for Climate Impact Research, ou_persistent13              
2External Organizations, ou_persistent22              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: Collective variables (CVs) are low-dimensional projections of high-dimensional system states. They are used to gain insights into complex emergent dynamical behaviors of processes on networks. The relation between CVs and network measures is not well understood and its derivation typically requires detailed knowledge of both the dynamical system and the network topology. In this Letter, we present a data-driven method for algorithmically learning and understanding CVs for binary-state spreading processes on networks of arbitrary topology. We demonstrate our method using four example networks: the stochastic block model, a ring-shaped graph, a random regular graph, and a scale-free network generated by the Albert-Barabási model. Our results deliver evidence for the existence of low-dimensional CVs even in cases that are not yet understood theoretically.

Details

einblenden:
ausblenden:
Sprache(n): eng - Englisch
 Datum: 2024-02-072024-02-07
 Publikationsstatus: Final veröffentlicht
 Seiten: 6
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: Expertenbegutachtung
 Identifikatoren: DOI: 10.1103/PhysRevE.109.L022301
PIKDOMAIN: RD4 - Complexity Science
Organisational keyword: RD4 - Complexity Science
Organisational keyword: FutureLab - Game Theory & Networks of Interacting Agents
Research topic keyword: Complex Networks
Regional keyword: Global
Model / method: Agent-based Models
Model / method: Nonlinear Data Analysis
MDB-ID: No MDB - stored outside PIK (see locators/paper)
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Physical Review E
Genre der Quelle: Zeitschrift, SCI, Scopus, p3
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: -
Seiten: - Band / Heft: 109 (2) Artikelnummer: L022301 Start- / Endseite: - Identifikator: CoNE: https://publications.pik-potsdam.de/cone/journals/resource/150218
Publisher: American Physical Society (APS)