Deutsch
 
Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

 
 
DownloadE-Mail
  Generic network sparsification via hybrid edge sampling

Su, Z., Kurths, J., Meyerhenke, H. (2025): Generic network sparsification via hybrid edge sampling. - Journal of the Franklin Institute, 362, 1, 107404.
https://doi.org/10.1016/j.jfranklin.2024.107404

Item is

Dateien

einblenden: Dateien
ausblenden: Dateien
:
30710oa.pdf (Verlagsversion), 2MB
Name:
30710oa.pdf
Beschreibung:
-
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-

Externe Referenzen

einblenden:
ausblenden:
externe Referenz:
https://doi.org/10.5281/zenodo.14179715 (Ergänzendes Material)
Beschreibung:
Code

Urheber

einblenden:
ausblenden:
 Urheber:
Su, Zhen1, Autor              
Kurths, Jürgen1, Autor              
Meyerhenke, Henning2, Autor
Affiliations:
1Potsdam Institute for Climate Impact Research, ou_persistent13              
2External Organizations, ou_persistent22              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: Network (or graph) sparsification benefits downstream graph mining tasks. Finding a sparsified subgraph similar to the original graph is, however, challenging due to the requirement of preserving various (or at least representative) network properties. In this paper, we propose a general hybrid edge sampling scheme named LOGA, as the combination of the Local-filtering-based Random Edge sampling (LRE) (Hamann et al., 2016) and the Game-theoretic Sparsification with Tolerance (GST) (Su et al., 2022). LOGA fully utilizes the advantages of GST — in preserving complex structural properties by preserving local node properties in expectation – and LRE – in preserving the connectivity of a given network. Specifically, we first prove the existence of multiple equilibria in GST. This insight leads us to propose LOGA and its variant LOGA by refining GST. LOGA is obtained by regarding LRE as an empirically good initializer for GST, while LOGA is obtained by further including a constrained update for GST. In this way, LOGA/LOGA generalize the work on GST to graphs with weights and different densities, without increasing the asymptotic time complexity. Extensive experiments on 26 weighted and unweighted networks with different densities demonstrate that LOGA performs best for all 26 instances, i.e., they preserve representative network properties better than state-of-the-art sampling methods alone.

Details

einblenden:
ausblenden:
Sprache(n): eng - Englisch
 Datum: 2024-11-102024-11-202025-01-01
 Publikationsstatus: Final veröffentlicht
 Seiten: 13
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: Expertenbegutachtung
 Identifikatoren: DOI: 10.1016/j.jfranklin.2024.107404
PIKDOMAIN: RD4 - Complexity Science
Organisational keyword: RD4 - Complexity Science
MDB-ID: No MDB - stored outside PIK (see locators/paper)
Research topic keyword: Complex Networks
Model / method: Game Theory
OATYPE: Hybrid - DEAL Elsevier
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Journal of the Franklin Institute
Genre der Quelle: Zeitschrift, SCI, Scopus
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: -
Seiten: - Band / Heft: 362 (1) Artikelnummer: 107404 Start- / Endseite: - Identifikator: CoNE: https://publications.pik-potsdam.de/cone/journals/resource/journal-franklin-institute
Publisher: Elsevier