日本語
 
Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細

登録内容を編集ファイル形式で保存
 
 
ダウンロード電子メール
  Control, bi-stability, and preference for chaos in time-dependent vaccination campaign

Gabrick, E. C., Brugnago, E. L., de Moraes, A. L. R., Protachevicz, P. R., da Silva, S. T., Borges, F. S., Caldas, I. L., Batista, A. M., & Kurths, J. (2024). Control, bi-stability, and preference for chaos in time-dependent vaccination campaign. Chaos, 34(9):. doi:10.1063/5.0221150.

Item is

基本情報

表示: 非表示:
資料種別: 学術論文

ファイル

表示: ファイル
非表示: ファイル
:
gabrick_2024_093118_1_5.0221150.pdf (出版社版), 7MB
 
ファイルのパーマリンク:
-
ファイル名:
gabrick_2024_093118_1_5.0221150.pdf
説明:
-
閲覧制限:
非公開 (公開猶予期限 2025-09-20)
MIMEタイプ / チェックサム:
application/pdf
技術的なメタデータ:
著作権日付:
-
著作権情報:
-
CCライセンス:
-

関連URL

表示:

作成者

表示:
非表示:
 作成者:
Gabrick, Enrique C.1, 著者              
Brugnago, Eduardo L.2, 著者
de Moraes, Ana L. R.2, 著者
Protachevicz, Paulo R.2, 著者
da Silva, Sidney T.2, 著者
Borges, Fernando S.2, 著者
Caldas, Iberê L.2, 著者
Batista, Antonio M.2, 著者
Kurths, Jürgen1, 著者              
所属:
1Potsdam Institute for Climate Impact Research, ou_persistent13              
2External Organizations, ou_persistent22              

内容説明

表示:
非表示:
キーワード: -
 要旨: In this work, effects of constant and time-dependent vaccination rates on the Susceptible–Exposed–Infected–Recovered–Susceptible (SEIRS) seasonal model are studied. Computing the Lyapunov exponent, we show that typical complex structures, such as shrimps, emerge for given combinations of a constant vaccination rate and another model parameter. In some specific cases, the constant vaccination does not act as a chaotic suppressor and chaotic bands can exist for high levels of vaccination (e.g., > 0.95⁠). Moreover, we obtain linear and non-linear relationships between one control parameter and constant vaccination to establish a disease-free solution. We also verify that the total infected number does not change whether the dynamics is chaotic or periodic. The introduction of a time-dependent vaccine is made by the inclusion of a periodic function with a defined amplitude and frequency. For this case, we investigate the effects of different amplitudes and frequencies on chaotic attractors, yielding low, medium, and high seasonality degrees of contacts. Depending on the parameters of the time-dependent vaccination function, chaotic structures can be controlled and become periodic structures. For a given set of parameters, these structures are accessed mostly via crisis and, in some cases, via period-doubling. After that, we investigate how the time-dependent vaccine acts in bi-stable dynamics when chaotic and periodic attractors coexist. We identify that this kind of vaccination acts as a control by destroying almost all the periodic basins. We explain this by the fact that chaotic attractors exhibit more desirable characteristics for epidemics than periodic ones in a bi-stable state.

資料詳細

表示:
非表示:
言語: eng - 英語
 日付: 2024-09-172024-09-17
 出版の状態: Finally published
 ページ: -
 出版情報: -
 目次: -
 査読: 査読あり
 識別子(DOI, ISBNなど): DOI: 10.1063/5.0221150
MDB-ID: No data to archive
PIKDOMAIN: RD4 - Complexity Science
Organisational keyword: RD4 - Complexity Science
Research topic keyword: Complex Networks
Research topic keyword: Health
 学位: -

関連イベント

表示:

訴訟

表示:

Project information

表示:

出版物 1

表示:
非表示:
出版物名: Chaos
種別: 学術雑誌, SCI, Scopus, p3
 著者・編者:
所属:
出版社, 出版地: -
ページ: - 巻号: 34 (9) 通巻号: 093118 開始・終了ページ: - 識別子(ISBN, ISSN, DOIなど): CoNE: https://publications.pik-potsdam.de/cone/journals/resource/180808
Publisher: American Institute of Physics (AIP)