Deutsch
 
Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Group consensus for fractional-order heterogeneous multi-agent systems under cooperation-competition networks with time delays

Sun, F., Han, Y., Zhu, W., Kurths, J. (2024): Group consensus for fractional-order heterogeneous multi-agent systems under cooperation-competition networks with time delays. - Communications in Nonlinear Science and Numerical Simulation, 133, 107951.
https://doi.org/10.1016/j.cnsns.2024.107951

Item is

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Sun, Fenglan1, Autor              
Han, Yunpeng2, Autor
Zhu, Wei2, Autor
Kurths, Jürgen1, Autor              
Affiliations:
1Potsdam Institute for Climate Impact Research, ou_persistent13              
2External Organizations, ou_persistent22              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: The issue of group consensus for heterogeneous fractional-order multi-agent systems under the cooperation-competition networks with time delays is investigated in this paper. Novel group consensus control protocols with input and communication delays are designed based on cooperative-competitive interaction. The considered multi-agent systems consists of fractional order dynamics with the single integrator and the double integrator, and the speed of agents is not known. The matrix theory, frequency domain approach and graph theory are used to figure out the sufficient conditions for group consensus under the switching and fixed topology, respectively. Finally, numerical simulation examples are given to verify the correctness of the theoretical results.

Details

einblenden:
ausblenden:
Sprache(n): eng - Englisch
 Datum: 2024-03-082024-06-01
 Publikationsstatus: Final veröffentlicht
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: Expertenbegutachtung
 Identifikatoren: DOI: 10.1016/j.cnsns.2024.107951
MDB-ID: No data to archive
PIKDOMAIN: RD4 - Complexity Science
Organisational keyword: RD4 - Complexity Science
Research topic keyword: Complex Networks
Research topic keyword: Nonlinear Dynamics
Model / method: Machine Learning
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Communications in Nonlinear Science and Numerical Simulation
Genre der Quelle: Zeitschrift, SCI, Scopus, p3
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: -
Seiten: - Band / Heft: 133 Artikelnummer: 107951 Start- / Endseite: - Identifikator: CoNE: https://publications.pik-potsdam.de/cone/journals/resource/201610061
Publisher: Elsevier