日本語
 
Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細

  Fusing deep learning features for parameter identification of a stochastic airfoil system

Feng, J., Wang, X., Liu, Q., Xu, Y., & Kurths, J. (2024). Fusing deep learning features for parameter identification of a stochastic airfoil system. Nonlinear Dynamics. doi:10.1007/s11071-024-10152-6.

Item is

基本情報

表示: 非表示:
資料種別: 学術論文

ファイル

表示: ファイル
非表示: ファイル
:
feng_2024_s11071-024-10152-6.pdf (出版社版), 5MB
 
ファイルのパーマリンク:
-
ファイル名:
feng_2024_s11071-024-10152-6.pdf
説明:
-
閲覧制限:
非公開
MIMEタイプ / チェックサム:
application/pdf
技術的なメタデータ:
著作権日付:
-
著作権情報:
-
CCライセンス:
-

関連URL

表示:

作成者

表示:
非表示:
 作成者:
Feng, Jing1, 著者
Wang, Xiaolong1, 著者
Liu, Qi1, 著者
Xu, Yong1, 著者
Kurths, Jürgen2, 著者              
所属:
1External Organizations, ou_persistent22              
2Potsdam Institute for Climate Impact Research, ou_persistent13              

内容説明

表示:
非表示:
キーワード: -
 要旨: This work proposes a data-driven parameter identification approach for a two-degree-of-freedom airfoil system with cubic nonlinearity and stochasticity, where the random turbulent flow is quantified by non-Gaussian Lévy colored noise. The joint identification of the parameters controlling the flow velocity, airfoil geometry and structural stiffness is shaped as a unified machine learning task that includes three stages. (1) The first stage extracts local deep learning features from measurement data. (2) Next, the local features are fused to construct fixed-length global features representing the whole sample trajectory. (3) The global features are mapped to the parameter estimates and the accuracy indicators for uncertainty quantification. The numerical studies show that the obtained parameter estimation neural network can identify the system parameters from a sample trajectory with partially observed state measurements, namely, system parameters can be fully identified if only one or two of the pitch and plunge degrees of freedom are available. The intermediate deep features extracted by the PENN are compact representations of the stochastic system, as they carry key information of the system parameters. Suitable rules for information fusion are further designed, adapting the PENN to identify the system parameters from multiple short trajectories or time-varying parameters from a sample trajectory. The results suggest that the proposed deep learning approach is a flexible and versatile computation device for information extraction and fusion from limited data of stochastic nonlinear systems.

資料詳細

表示:
非表示:
言語: eng - 英語
 日付: 2024-08-27
 出版の状態: オンラインで出版済み
 ページ: 23
 出版情報: -
 目次: -
 査読: 査読あり
 識別子(DOI, ISBNなど): DOI: 10.1007/s11071-024-10152-6
MDB-ID: No data to archive
PIKDOMAIN: RD4 - Complexity Science
Organisational keyword: RD4 - Complexity Science
Model / method: Machine Learning
Model / method: Nonlinear Data Analysis
 学位: -

関連イベント

表示:

訴訟

表示:

Project information

表示:

出版物 1

表示:
非表示:
出版物名: Nonlinear Dynamics
種別: 学術雑誌, SCI, Scopus
 著者・編者:
所属:
出版社, 出版地: -
ページ: - 巻号: - 通巻号: - 開始・終了ページ: - 識別子(ISBN, ISSN, DOIなど): CoNE: https://publications.pik-potsdam.de/cone/journals/resource/nonlinear-dynamics
Publisher: Springer