Deutsch
 
Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

 
 
DownloadE-Mail
  Fusing deep learning features for parameter identification of a stochastic airfoil system

Feng, J., Wang, X., Liu, Q., Xu, Y., Kurths, J. (2025): Fusing deep learning features for parameter identification of a stochastic airfoil system. - Nonlinear Dynamics, 113, 4211-4233.
https://doi.org/10.1007/s11071-024-10152-6

Item is

Dateien

einblenden: Dateien
ausblenden: Dateien
:
feng_2024_s11071-024-10152-6.pdf (Verlagsversion), 5MB
 
Datei-Permalink:
-
Name:
feng_2024_s11071-024-10152-6.pdf
Beschreibung:
-
Sichtbarkeit:
Privat
MIME-Typ / Prüfsumme:
application/pdf
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-
Lizenz:
-

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Feng, Jing1, Autor
Wang, Xiaolong1, Autor
Liu, Qi1, Autor
Xu, Yong1, Autor
Kurths, Jürgen2, Autor              
Affiliations:
1External Organizations, ou_persistent22              
2Potsdam Institute for Climate Impact Research, ou_persistent13              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: This work proposes a data-driven parameter identification approach for a two-degree-of-freedom airfoil system with cubic nonlinearity and stochasticity, where the random turbulent flow is quantified by non-Gaussian Lévy colored noise. The joint identification of the parameters controlling the flow velocity, airfoil geometry and structural stiffness is shaped as a unified machine learning task that includes three stages. (1) The first stage extracts local deep learning features from measurement data. (2) Next, the local features are fused to construct fixed-length global features representing the whole sample trajectory. (3) The global features are mapped to the parameter estimates and the accuracy indicators for uncertainty quantification. The numerical studies show that the obtained parameter estimation neural network can identify the system parameters from a sample trajectory with partially observed state measurements, namely, system parameters can be fully identified if only one or two of the pitch and plunge degrees of freedom are available. The intermediate deep features extracted by the PENN are compact representations of the stochastic system, as they carry key information of the system parameters. Suitable rules for information fusion are further designed, adapting the PENN to identify the system parameters from multiple short trajectories or time-varying parameters from a sample trajectory. The results suggest that the proposed deep learning approach is a flexible and versatile computation device for information extraction and fusion from limited data of stochastic nonlinear systems.

Details

einblenden:
ausblenden:
Sprache(n): eng - Englisch
 Datum: 2024-08-272025-03-01
 Publikationsstatus: Final veröffentlicht
 Seiten: 23
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: Expertenbegutachtung
 Identifikatoren: DOI: 10.1007/s11071-024-10152-6
MDB-ID: No data to archive
PIKDOMAIN: RD4 - Complexity Science
Organisational keyword: RD4 - Complexity Science
Model / method: Machine Learning
Model / method: Nonlinear Data Analysis
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Nonlinear Dynamics
Genre der Quelle: Zeitschrift, SCI, Scopus
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: -
Seiten: - Band / Heft: 113 Artikelnummer: - Start- / Endseite: 4211 - 4233 Identifikator: CoNE: https://publications.pik-potsdam.de/cone/journals/resource/nonlinear-dynamics
Publisher: Springer