English
 
Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Disentangling the drivers of future Antarctic ice loss with a historically calibrated ice-sheet model

Coulon, V., Klose, A. K., Kittel, C., Edwards, T., Turner, F., Winkelmann, R., Pattyn, F. (2024): Disentangling the drivers of future Antarctic ice loss with a historically calibrated ice-sheet model. - The Cryosphere, 18, 2, 653-681.
https://doi.org/10.5194/tc-18-653-2024

Item is

Files

show Files
hide Files
:
klose_2024_tc-18-653-2024.pdf (Publisher version), 7MB
Name:
klose_2024_tc-18-653-2024.pdf
Description:
-
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-

Locators

show
hide
Locator:
https://zenodo.org/records/10812218 (Supplementary material)
Description:
Dataset

Creators

show
hide
 Creators:
Coulon, Violaine1, Author
Klose, Ann Kristin2, Author              
Kittel, Christoph1, Author
Edwards, Tamsin1, Author
Turner, Fiona1, Author
Winkelmann, Ricarda2, Author              
Pattyn, Frank1, Author
Affiliations:
1External Organizations, ou_persistent22              
2Potsdam Institute for Climate Impact Research, ou_persistent13              

Content

show
hide
Free keywords: -
 Abstract: We use an observationally calibrated ice-sheet model to investigate the future trajectory of the Antarctic ice sheet related to uncertainties in the future balance between sub-shelf melting and ice discharge, on the one hand, and the surface mass balance, on the other. Our ensemble of simulations, forced by a panel of climate models from the sixth phase of the Coupled Model Intercomparison Project (CMIP6), suggests that the ocean will be the primary driver of short-term Antarctic mass loss, initiating ice loss in West Antarctica already during this century. The atmosphere initially plays a mitigating role through increased snowfall, leading to an Antarctic contribution to global mean sea-level rise by 2100 of 6 (−8 to 15) cm under a low-emission scenario and 5.5 (−10 to 16) cm under a very high-emission scenario. However, under the very high-emission pathway, the influence of the atmosphere shifts beyond the end of the century, becoming an amplifying driver of mass loss as the ice sheet's surface mass balance decreases. We show that this transition occurs when Antarctic near-surface warming exceeds a critical threshold of +7.5 ∘C, at which the increase in surface runoff outweighs the increase in snow accumulation, a signal that is amplified by the melt–elevation feedback. Therefore, under the very high-emission scenario, oceanic and atmospheric drivers are projected to result in a complete collapse of the West Antarctic ice sheet along with significant grounding-line retreat in the marine basins of the East Antarctic ice sheet, leading to a median global mean sea-level rise of 2.75 (6.95) m by 2300 (3000). Under a more sustainable socio-economic pathway, we find that the Antarctic ice sheet may still contribute to a median global mean sea-level rise of 0.62 (1.85) m by 2300 (3000). However, the rate of sea-level rise is significantly reduced as mass loss is likely to remain confined to the Amundsen Sea Embayment, where present-day climate conditions seem sufficient to commit to a continuous retreat of Thwaites Glacier.

Details

show
hide
Language(s): eng - English
 Dates: 2024-02-122024-02-12
 Publication Status: Finally published
 Pages: 29
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Identifiers: DOI: 10.5194/tc-18-653-2024
PIKDOMAIN: RD4 - Complexity Science
Organisational keyword: RD4 - Complexity Science
PIKDOMAIN: RD1 - Earth System Analysis
Organisational keyword: RD1 - Earth System Analysis
Working Group: Ice Dynamics
MDB-ID: No MDB - stored outside PIK (see locators/paper)
OATYPE: Gold Open Access
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: The Cryosphere
Source Genre: Journal, SCI, Scopus, p3, oa
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: 18 (2) Sequence Number: - Start / End Page: 653 - 681 Identifier: CoNE: https://publications.pik-potsdam.de/cone/journals/resource/140507
Publisher: Copernicus