日本語
 
Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細

  Multifractal analysis of wind turbine power and rainfall from an operational wind farm – Part 1: Wind turbine power and the associated biases

Jose, J., Gires, A., Roustan, Y., Schnorenberger, E., Tchiguirinskaia, I., & Schertzer, D. (2024). Multifractal analysis of wind turbine power and rainfall from an operational wind farm – Part 1: Wind turbine power and the associated biases. Nonlinear Processes in Geophysics, 31(4), 587-602. doi:10.5194/npg-31-587-2024.

Item is

基本情報

表示: 非表示:
資料種別: 学術論文

ファイル

表示: ファイル
非表示: ファイル
:
jose_2024_npg-31-587-2024.pdf (出版社版), 4MB
ファイル名:
jose_2024_npg-31-587-2024.pdf
説明:
-
閲覧制限:
公開
MIMEタイプ / チェックサム:
application/pdf / [MD5]
技術的なメタデータ:
著作権日付:
-
著作権情報:
-

関連URL

表示:
非表示:
説明:
-
説明:
-
説明:
-

作成者

表示:
非表示:
 作成者:
Jose, Jerry1, 著者
Gires, Auguste1, 著者
Roustan, Yelva1, 著者
Schnorenberger, Ernani1, 著者
Tchiguirinskaia, Ioulia1, 著者
Schertzer, Daniel2, 著者              
所属:
1External Organizations, ou_persistent22              
2Potsdam Institute for Climate Impact Research, Potsdam, ou_persistent13              

内容説明

表示:
非表示:
キーワード: -
 要旨: The inherent variability in atmospheric fields, which extends over a wide range of temporal and spatial scales, is also transferred to energy fields extracted from them. In the specific case of wind power generation, this can be seen in the theoretical power available for extraction and the empirical power produced by turbines. To model and analyse them, it is important to quantify their variability, intermittency, and correlations with other interacting fields across scales. To understand the uncertainties involved in power production, power outputs from four 2 MW turbines are analysed (from an operational wind farm at Pay d'Othe, 110 km south-east of Paris, France) using the scale-invariant framework of universal multifractals (UM). Their scaling properties were compared with power available at the same location from simultaneously measured wind velocity. While statistically analysing the turbine output, the rated power acts like an upper threshold that results in biased estimators. This is identified and quantified here using the theoretical framework of UM and validated using numerical simulations. Understanding the effect of instrumental thresholds in statistical analysis is important in retrieving actual fields and modelling them, more so in wind power production, where the uncertainties due to turbulence are already a leading challenge. This is expanded in Part 2, where the influence of rainfall on power production is studied across scales using UM and joint multifractals.

資料詳細

表示:
非表示:
言語: eng - 英語
 日付: 2024-12-102024-12-10
 出版の状態: Finally published
 ページ: 16
 出版情報: -
 目次: -
 査読: 査読あり
 識別子(DOI, ISBNなど): DOI: 10.5194/npg-31-587-2024
MDB-ID: No MDB - stored outside PIK (see locators/paper)
PIKDOMAIN: RD4 - Complexity Science
Organisational keyword: RD4 - Complexity Science
Research topic keyword: Tipping Elements
Model / method: Machine Learning
Model / method: Nonlinear Data Analysis
 学位: -

関連イベント

表示:

訴訟

表示:

Project information

表示:

出版物 1

表示:
非表示:
出版物名: Nonlinear Processes in Geophysics
種別: 学術雑誌, SCI, Scopus, p3, oa
 著者・編者:
所属:
出版社, 出版地: -
ページ: - 巻号: 31 (4) 通巻号: - 開始・終了ページ: 587 - 602 識別子(ISBN, ISSN, DOIなど): CoNE: https://publications.pik-potsdam.de/cone/journals/resource/journals364
Publisher: Copernicus