Deutsch
 
Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Multifractal analysis of wind turbine power and rainfall from an operational wind farm – Part 1: Wind turbine power and the associated biases

Jose, J., Gires, A., Roustan, Y., Schnorenberger, E., Tchiguirinskaia, I., Schertzer, D. (2024): Multifractal analysis of wind turbine power and rainfall from an operational wind farm – Part 1: Wind turbine power and the associated biases. - Nonlinear Processes in Geophysics, 31, 4, 587-602.
https://doi.org/10.5194/npg-31-587-2024

Item is

Dateien

einblenden: Dateien
ausblenden: Dateien
:
jose_2024_npg-31-587-2024.pdf (Verlagsversion), 4MB
Name:
jose_2024_npg-31-587-2024.pdf
Beschreibung:
-
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-

Externe Referenzen

einblenden:
ausblenden:
externe Referenz:
https://zenodo.org/records/5801900 (Ergänzendes Material)
Beschreibung:
-
externe Referenz:
https://zenodo.org/records/3707904 (Ergänzendes Material)
Beschreibung:
-
externe Referenz:
https://zenodo.org/records/3707904 (Ergänzendes Material)
Beschreibung:
-

Urheber

einblenden:
ausblenden:
 Urheber:
Jose, Jerry1, Autor
Gires, Auguste1, Autor
Roustan, Yelva1, Autor
Schnorenberger, Ernani1, Autor
Tchiguirinskaia, Ioulia1, Autor
Schertzer, Daniel2, Autor              
Affiliations:
1External Organizations, ou_persistent22              
2Potsdam Institute for Climate Impact Research, Potsdam, ou_persistent13              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: The inherent variability in atmospheric fields, which extends over a wide range of temporal and spatial scales, is also transferred to energy fields extracted from them. In the specific case of wind power generation, this can be seen in the theoretical power available for extraction and the empirical power produced by turbines. To model and analyse them, it is important to quantify their variability, intermittency, and correlations with other interacting fields across scales. To understand the uncertainties involved in power production, power outputs from four 2 MW turbines are analysed (from an operational wind farm at Pay d'Othe, 110 km south-east of Paris, France) using the scale-invariant framework of universal multifractals (UM). Their scaling properties were compared with power available at the same location from simultaneously measured wind velocity. While statistically analysing the turbine output, the rated power acts like an upper threshold that results in biased estimators. This is identified and quantified here using the theoretical framework of UM and validated using numerical simulations. Understanding the effect of instrumental thresholds in statistical analysis is important in retrieving actual fields and modelling them, more so in wind power production, where the uncertainties due to turbulence are already a leading challenge. This is expanded in Part 2, where the influence of rainfall on power production is studied across scales using UM and joint multifractals.

Details

einblenden:
ausblenden:
Sprache(n): eng - Englisch
 Datum: 2024-12-102024-12-10
 Publikationsstatus: Final veröffentlicht
 Seiten: 16
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: Expertenbegutachtung
 Identifikatoren: DOI: 10.5194/npg-31-587-2024
MDB-ID: No MDB - stored outside PIK (see locators/paper)
PIKDOMAIN: RD4 - Complexity Science
Organisational keyword: RD4 - Complexity Science
Research topic keyword: Tipping Elements
Model / method: Machine Learning
Model / method: Nonlinear Data Analysis
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Nonlinear Processes in Geophysics
Genre der Quelle: Zeitschrift, SCI, Scopus, p3, oa
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: -
Seiten: - Band / Heft: 31 (4) Artikelnummer: - Start- / Endseite: 587 - 602 Identifikator: CoNE: https://publications.pik-potsdam.de/cone/journals/resource/journals364
Publisher: Copernicus