Deutsch
 
Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Efficient Continuous Network Dismantling

Liu, Y., Chen, X., Wang, X., Su, Z., Fan, S., Wang, Z. (2025): Efficient Continuous Network Dismantling. - IEEE Transactions on Systems, Man, and Cybernetics: Systems, 55, 2, 976-989.
https://doi.org/10.1109/TSMC.2024.3496694

Item is

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Liu, Yang1, Autor
Chen, Xiaoqi1, Autor
Wang, Xi1, Autor
Su, Zhen2, Autor              
Fan, Shiqi1, Autor
Wang, Zhen1, Autor
Affiliations:
1External Organizations, ou_persistent22              
2Potsdam Institute for Climate Impact Research, ou_persistent13              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: A great number of studies have demonstrated that many complex systems could benefit a lot from complex networks, through either a direct modeling on which dynamics among agents could be investigated in a global view or an indirect representation by the aid of that the leading factors could be captured more clearly. Hence, in the context of networks, this article copes with the continuous network dismantling problem which aims to find the key node set whose removal would break down a given network more thoroughly and thus is more capable of suppressing virus or misinformation. To achieve this goal effectively and efficiently, we propose the external-degree and internal-size component suppression (EDIS) framework based on the network percolation, where we constrain the search space by a well-designed local goal function and candidate selection approach such that EDIS could obtain better results than the-state-of-the-art in networks of millions of nodes in seconds. We also contribute two strategies with time complexity O(mlogϑm) and space complexity O(m) , of networks of m edges, under such framework by well studying the evolving characteristics of the associated connected components as nodes are occupied, where ϑ>1 is a hyperparameter. Our results on 12 empirical networks from various domains demonstrate that the proposed method has far better performance than the-state-of-the-art over both effectiveness and computing time. Our study could play important roles in many real-world scenarios, such as the containment of misinformation or epidemics, the distribution of resources or vaccine, the decision of which group of individuals set to quarantine, or the detection of the resilience of a network-based system under intentional attacks.

Details

einblenden:
ausblenden:
Sprache(n): eng - Englisch
 Datum: 2024-11-252025-02-01
 Publikationsstatus: Final veröffentlicht
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: Expertenbegutachtung
 Identifikatoren: DOI: 10.1109/TSMC.2024.3496694
MDB-ID: No data to archive
PIKDOMAIN: RD4 - Complexity Science
Organisational keyword: RD4 - Complexity Science
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: IEEE Transactions on Systems, Man, and Cybernetics: Systems
Genre der Quelle: Zeitschrift, SCI, Scopus
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: -
Seiten: - Band / Heft: 55 (2) Artikelnummer: - Start- / Endseite: 976 - 989 Identifikator: CoNE: https://publications.pik-potsdam.de/cone/journals/resource/IEEE-transactions-systems-man-cybernetics
Publisher: Institute of Electrical and Electronics Engineers (IEEE)