Deutsch
 
Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Spatial network disintegration based on ranking aggregation

Wang, Z., Deng, Y., Dong, Y., Kurths, J., Wu, J. (2025): Spatial network disintegration based on ranking aggregation. - Information Processing & Management, 62, 1, 103955.
https://doi.org/10.1016/j.ipm.2024.103955

Item is

Dateien

einblenden: Dateien
ausblenden: Dateien
:
wang_2024_1-s2.0-S0306457324003145-main.pdf (Verlagsversion), 2MB
 
Datei-Permalink:
-
Name:
wang_2024_1-s2.0-S0306457324003145-main.pdf
Beschreibung:
-
Sichtbarkeit:
Privat
MIME-Typ / Prüfsumme:
application/pdf
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-
Lizenz:
-

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Wang, Zhigang1, Autor
Deng, Ye1, Autor
Dong, Yu1, Autor
Kurths, Jürgen2, Autor              
Wu, Jun1, Autor
Affiliations:
1External Organizations, ou_persistent22              
2Potsdam Institute for Climate Impact Research, ou_persistent13              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: Disintegrating harmful networks presents a significant challenge, especially in spatial networks where both topological and geospatial features must be considered. Existing methods that rely on a single metric often fail to capture the full complexity of such networks. To address these limitations, we propose a novel ranking aggregation-based algorithm for spatial network disintegration. Our approach integrates multiple region centrality metrics, providing a comprehensive evaluation of region importance. The algorithm operates in two stages: first, multiple rankings based on different centrality metrics are aggregated into a composite ranking to refine the candidate regions for disintegration. In the second stage, an exact target enumeration method is applied within this candidate set to determine the optimal combination of regions that maximizes disintegration impact. This interconnected approach effectively combines ranking aggregation with targeted enumeration to ensure both efficiency and accuracy. Extensive experiments are conducted on synthetic and real-world spatial networks of different network configurations. The results demonstrate that our method consistently achieves superior disintegration performance compared to traditional approaches, effectively addressing the challenges associated with spatial network disintegration. This study provides a contribution to understanding and improving spatial network disintegration strategies by leveraging a comprehensive, multi-criteria approach.

Details

einblenden:
ausblenden:
Sprache(n): eng - Englisch
 Datum: 2024-11-092025-01-01
 Publikationsstatus: Final veröffentlicht
 Seiten: 16
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: Expertenbegutachtung
 Identifikatoren: DOI: 10.1016/j.ipm.2024.103955
MDB-ID: No data to archive
PIKDOMAIN: RD4 - Complexity Science
Organisational keyword: RD4 - Complexity Science
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Information Processing & Management
Genre der Quelle: Zeitschrift, SCI, SSCI, Scopus
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: -
Seiten: - Band / Heft: 62 (1) Artikelnummer: 103955 Start- / Endseite: - Identifikator: CoNE: https://publications.pik-potsdam.de/cone/journals/resource/1873-5371
Publisher: Elsevier