Deutsch
 
Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

 
 
DownloadE-Mail
  Examining urban agglomeration heat island with explainable AI: An enhanced consideration of anthropogenic heat emissions

Sheng, T., Zhang, Z., Qian, Z., Ma, P., Xie, W., Zeng, Y., Zhang, K., Sun, Z., Yu, J., Chen, M. (2025): Examining urban agglomeration heat island with explainable AI: An enhanced consideration of anthropogenic heat emissions. - Urban Climate, 59, 102251.
https://doi.org/10.1016/j.uclim.2024.102251

Item is

Dateien

einblenden: Dateien
ausblenden: Dateien
:
sheng_2024_1-s2.0-S2212095524004486-main.pdf (Verlagsversion), 11MB
 
Datei-Permalink:
-
Name:
sheng_2024_1-s2.0-S2212095524004486-main.pdf
Beschreibung:
-
Sichtbarkeit:
Privat
MIME-Typ / Prüfsumme:
application/pdf
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-
Lizenz:
-

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Sheng, Tianyu1, Autor
Zhang, Zhixin1, Autor
Qian, Zhen2, Autor              
Ma, Peilong1, Autor
Xie, Wei1, Autor
Zeng, Yue1, Autor
Zhang, Kai1, Autor
Sun, Zhuo1, Autor
Yu, Jian1, Autor
Chen, Min1, Autor
Affiliations:
1External Organizations, ou_persistent22              
2Potsdam Institute for Climate Impact Research, ou_persistent13              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: In the context of global warming and urbanization, regional economic concentration has increased anthropogenic heat emissions (AHE), posing significant threats to health and sustainability. The oversimplification of AHE in previous urban heat island studies hinders the development and implementation of AHE-reduction strategies aimed at mitigating high land surface temperature (LST). Therefore, this study reevaluates the regional heat island (RHI) effect in the Greater Bay Area (GBA) using multisource geo-big data. The analysis reveals that central RHI intensity (RHII) exceeds 3 °C, indicating a significant heat island. We constructed an integrated LightGBM model with four AHE and other classical indicators to fit LST, achieving an R2 of 0.8931. To improve the model's interpretability, we utilized SHapley Additive exPlanations (SHAP), which identified NDVI, DEM, and building AHE as significant indicators influencing LST in the GBA, each with SHAP values exceeding 0.25. Simulations of three intensity scenarios for tiered AHE reduction strategies show that a 10 % industrial AHE reduction in heavy industrial cities can cool 40 % of these areas and decrease RHII by more than 0.03 °C. This study provides actionable guidelines for targeted RHI mitigation in the GBA and provides valuable insights for evaluating RHI in other bay areas and urban agglomerations.

Details

einblenden:
ausblenden:
Sprache(n): eng - Englisch
 Datum: 2024-12-112024-12-202025-02-01
 Publikationsstatus: Final veröffentlicht
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: Expertenbegutachtung
 Identifikatoren: DOI: 10.1016/j.uclim.2024.102251
MDB-ID: No data to archive
PIKDOMAIN: RD4 - Complexity Science
Organisational keyword: RD4 - Complexity Science
PIKDOMAIN: RD5 - Climate Economics and Policy - MCC Berlin
Organisational keyword: RD5 - Climate Economics and Policy - MCC Berlin
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Urban Climate
Genre der Quelle: Zeitschrift, Scopus
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: -
Seiten: - Band / Heft: 59 Artikelnummer: 102251 Start- / Endseite: - Identifikator: CoNE: https://publications.pik-potsdam.de/cone/journals/resource/1402043
Publisher: Elsevier