Deutsch
 
Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

 
 
DownloadE-Mail
  Machine learning map of climate policy literature reveals disparities between scientific attention, policy density, and emissions

Callaghan, M., Banisch, L., Döbbeling-Hildebrandt, N., Edmondson, D., Flachsland, C., Lamb, W. F., Levi, S., Müller-Hansen, F., Posada, E., Vasudevan, S., Minx, J. C. (2025): Machine learning map of climate policy literature reveals disparities between scientific attention, policy density, and emissions. - npj Climate Action, 4, 7.
https://doi.org/10.1038/s44168-024-00196-0

Item is

Dateien

einblenden: Dateien
ausblenden: Dateien
:
s44168-024-00196-0.pdf (beliebiger Volltext), 2MB
Name:
s44168-024-00196-0.pdf
Beschreibung:
-
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Callaghan, Max1, Autor              
Banisch, Lucy2, Autor
Döbbeling-Hildebrandt, Niklas1, Autor              
Edmondson, Duncan2, Autor
Flachsland, Christian2, Autor
Lamb, William F.1, Autor              
Levi, Sebastian2, Autor
Müller-Hansen, Finn1, Autor              
Posada, Eduardo2, Autor
Vasudevan, Shraddha2, Autor
Minx, Jan C.1, Autor              
Affiliations:
1Potsdam Institute for Climate Impact Research, Potsdam, ou_persistent13              
2External Organizations, ou_persistent22              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: Current climate mitigation policies are not sufficient to meet the Paris temperature target, and ramping up efforts will require rapid learning from the scientific literature on climate policies. This literature is vast and widely dispersed, as well as hard to define and categorise, hampering systematic efforts to learn from it. We use a machine learning pipeline using transformer-based language models to systematically map the relevant scientific literature on climate policies at scale and in real-time. Our “living systematic map” of climate policy research features a set of 84,990 papers, and classifies each of them by policy instrument type, sector, and geography. We explore how the distribution of these papers varies across countries, and compare this to the distribution of emissions and enacted climate policies. Results suggests a potential stark under-representation of industry sector policies, as well as diverging attention between science and policy with respect to economic and regulatory instruments.

Details

einblenden:
ausblenden:
Sprache(n): eng - Englisch
 Datum: 2025-02-112025-02-11
 Publikationsstatus: Final veröffentlicht
 Seiten: 14
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: Expertenbegutachtung
 Identifikatoren: DOI: 10.1038/s44168-024-00196-0
PIKDOMAIN: RD5 - Climate Economics and Policy - MCC Berlin
Organisational keyword: RD5 - Climate Economics and Policy - MCC Berlin
Working Group: Evidence for Climate Solutions
Research topic keyword: Climate Policy
Model / method: Machine Learning
Regional keyword: Global
MDB-ID: pending
OATYPE: Gold Open Access
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden: ausblenden:
Projektname : Ariadne
Grant ID : 03SFK5J0
Förderprogramm : -
Förderorganisation : Bundesministerium für Bildung und Forschung (BMBF)

Quelle 1

einblenden:
ausblenden:
Titel: npj Climate Action
Genre der Quelle: Zeitschrift, other, oa
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: -
Seiten: - Band / Heft: 4 Artikelnummer: 7 Start- / Endseite: - Identifikator: CoNE: https://publications.pik-potsdam.de/cone/journals/resource/2731-9814
Publisher: Nature