Deutsch
 
Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

 
 
DownloadE-Mail
  Impact of precipitation on the resilience of tropical forests to non-Gaussian Lévy fluctuations

Zheng, Y., Hu, Y., Boers, N., Duan, J., Kurths, J. (2025 online): Impact of precipitation on the resilience of tropical forests to non-Gaussian Lévy fluctuations. - Applied Mathematical Modelling, 141, 115931.
https://doi.org/10.1016/j.apm.2025.115931

Item is

Dateien

einblenden: Dateien
ausblenden: Dateien
:
zheng_2025_1-s2.0-S0307904X2500006X-main.pdf (Verlagsversion), 2MB
 
Datei-Permalink:
-
Name:
zheng_2025_1-s2.0-S0307904X2500006X-main.pdf
Beschreibung:
-
Sichtbarkeit:
Privat
MIME-Typ / Prüfsumme:
application/pdf
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-
Lizenz:
-

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Zheng, Yayun1, Autor
Hu, Yufei1, Autor
Boers, Niklas2, Autor              
Duan, Jinqiao1, Autor
Kurths, Jürgen1, Autor
Affiliations:
1External Organizations, ou_persistent22              
2Potsdam Institute for Climate Impact Research, ou_persistent13              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: Understanding the resilience of tropical vegetation to perturbations and disturbances is crucial for predicting ecosystem responses to climate change. Here we investigate the stability of tropical forest ecosystems across varying precipitation levels and the influence of extreme events, which are modeled as burst-like pulses following a heavy-tailed distribution, using an α-stable Lévy process. The non-Gaussian index α and noise intensity ε of α-stable Lévy processes characterizes the frequency and the intensity of these extreme events. We propose a novel global resilience measure based on the stationary density to quantify the probability of the system to remain within its basin of attraction despite extreme perturbations. Our findings reveal that higher precipitation levels inherently provide greater stability to the forest state, even in the presence of larger noise intensities and higher frequencies of small jumps in extreme events. In contrast, at a low precipitation level, forest resilience is markedly reduced and declines rapidly with rising noise intensity, indicating a higher susceptibility to perturbations. Our study highlights the critical role of precipitation in modulating the resilience of tropical forests to disturbances, realistically modelled as non-Gaussian Lévy fluctuations.

Details

einblenden:
ausblenden:
Sprache(n): eng - Englisch
 Datum: 2025-01-13
 Publikationsstatus: Online veröffentlicht
 Seiten: 10
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: Expertenbegutachtung
 Identifikatoren: DOI: 10.1016/j.apm.2025.115931
PIKDOMAIN: RD4 - Complexity Science
Organisational keyword: RD4 - Complexity Science
Working Group: Artificial Intelligence
MDB-ID: No data to archive
Research topic keyword: Tipping Elements
Model / method: Nonlinear Data Analysis
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Applied Mathematical Modelling
Genre der Quelle: Zeitschrift, SCI, Scopus, p3
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: -
Seiten: - Band / Heft: 141 Artikelnummer: 115931 Start- / Endseite: - Identifikator: CoNE: https://publications.pik-potsdam.de/cone/journals/resource/journals34
Publisher: Elsevier