Deutsch
 
Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Reconstructing Historical Climate Fields With Deep Learning

Bochow, N., Poltronieri, A., Rypdal, M., Boers, N. (2025): Reconstructing Historical Climate Fields With Deep Learning. - Science Advances, 11, 14, eadp0558.
https://doi.org/10.1126/sciadv.adp0558

Item is

Dateien

einblenden: Dateien
ausblenden: Dateien
:
32008oa.pdf (Verlagsversion), 7MB
Name:
32008oa.pdf
Beschreibung:
-
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-

Externe Referenzen

einblenden:
ausblenden:
externe Referenz:
https://zenodo.org/records/10512175 (Ergänzendes Material)
Beschreibung:
-
externe Referenz:
https://doi.org/10.48550/arXiv.2311.18348 (Preprint)
Beschreibung:
-

Urheber

einblenden:
ausblenden:
 Urheber:
Bochow, Nils1, Autor              
Poltronieri, Anna2, Autor
Rypdal, Martin2, Autor
Boers, Niklas1, Autor              
Affiliations:
1Potsdam Institute for Climate Impact Research, ou_persistent13              
2External Organizations, ou_persistent22              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: Historical records of climate fields are often sparse because of missing measurements, especially before the introduction of large-scale satellite missions. Several statistical and model-based methods have been introduced to fill gaps and reconstruct historical records. Here, we use a recently introduced deep learning approach based on Fourier convolutions, trained on numerical climate model output, to reconstruct historical climate fields. Using this approach, we are able to realistically reconstruct large and irregular areas of missing data and to reproduce known historical events, such as strong El Niño or La Niña events, with very little given information. Our method outperforms the widely used statistical kriging method, as well as other recent machine learning approaches. The model generalizes to higher resolutions than the ones it was trained on and can be used on a variety of climate fields. Moreover, it allows inpainting of masks never seen before during the model training.

Details

einblenden:
ausblenden:
Sprache(n): eng - Englisch
 Datum: 2025-03-102025-04-022025-04-02
 Publikationsstatus: Final veröffentlicht
 Seiten: 11
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: Expertenbegutachtung
 Identifikatoren: DOI: 10.1126/sciadv.adp0558
MDB-ID: No MDB - stored outside PIK (see locators/paper)
PIKDOMAIN: RD4 - Complexity Science
Organisational keyword: RD4 - Complexity Science
Working Group: Artificial Intelligence
Model / method: Machine Learning
OATYPE: Gold Open Access
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Science Advances
Genre der Quelle: Zeitschrift, SCI, Scopus, p3, oa
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: -
Seiten: - Band / Heft: 11 (14) Artikelnummer: eadp0558 Start- / Endseite: - Identifikator: CoNE: https://publications.pik-potsdam.de/cone/journals/resource/161027
Publisher: American Association for the Advancement of Science (AAAS)