Deutsch
 
Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Complex Network Modeling With Power-Law Activating Patterns and Its Evolutionary Dynamics

Zeng, Z., Feng, M., Liu, P., Kurths, J. (2025): Complex Network Modeling With Power-Law Activating Patterns and Its Evolutionary Dynamics. - IEEE Transactions on Systems, Man, and Cybernetics: Systems, 55, 4, 2546-2559.
https://doi.org/10.1109/TSMC.2025.3525465

Item is

Dateien

einblenden: Dateien
ausblenden: Dateien
:
Zeng_2025_2502.09768v1.pdf (Preprint), 10MB
 
Datei-Permalink:
-
Name:
Zeng_2025_2502.09768v1.pdf
Beschreibung:
-
Sichtbarkeit:
Privat
MIME-Typ / Prüfsumme:
application/pdf
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-
Lizenz:
-

Externe Referenzen

einblenden:
ausblenden:
externe Referenz:
https://doi.org/10.48550/arXiv.2502.09768 (Preprint)
Beschreibung:
-

Urheber

einblenden:
ausblenden:
 Urheber:
Zeng, Ziyan1, Autor
Feng, Minyu1, Autor
Liu, Pengfei1, Autor
Kurths, Jürgen2, Autor              
Affiliations:
1External Organizations, ou_persistent22              
2Potsdam Institute for Climate Impact Research, ou_persistent13              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: Complex network theory provides a unifying framework for the study of structured dynamic systems. The current literature emphasizes a widely reported phenomenon of intermittent interaction among network vertices. In this article, we introduce a complex network model that considers the stochastic switching of individuals between activated and quiescent states at power-law rates and the corresponding evolutionary dynamics. By using the Markov chain and renewal theory, we discover a homogeneous stationary distribution of activated sizes in the network with power-law activating patterns and infer some statistical characteristics. To better understand the effect of power-law activating patterns, we study the two-person-two-strategy evolutionary game dynamics, demonstrate the absorbability of strategies, and obtain the critical cooperation conditions for prisoner’s dilemmas in homogeneous networks without mutation. The evolutionary dynamics in real networks are also discussed. Our results provide a new perspective to analyze and understand social physics in time-evolving network systems.

Details

einblenden:
ausblenden:
Sprache(n): eng - Englisch
 Datum: 2025-01-172025-04-01
 Publikationsstatus: Final veröffentlicht
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: Expertenbegutachtung
 Identifikatoren: DOI: 10.1109/TSMC.2025.3525465
MDB-ID: No data to archive
PIKDOMAIN: RD4 - Complexity Science
Organisational keyword: RD4 - Complexity Science
Research topic keyword: Complex Networks
Research topic keyword: Nonlinear Dynamics
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: IEEE Transactions on Systems, Man, and Cybernetics: Systems
Genre der Quelle: Zeitschrift, SCI, Scopus
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: -
Seiten: - Band / Heft: 55 (4) Artikelnummer: - Start- / Endseite: 2546 - 2559 Identifikator: CoNE: https://publications.pik-potsdam.de/cone/journals/resource/IEEE-transactions-systems-man-cybernetics
Publisher: Institute of Electrical and Electronics Engineers (IEEE)