Deutsch
 
Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

 
 
DownloadE-Mail
  Neural topic modeling reveals German television’s climate change coverage

Schirmag, T., Wedemeyer, J., Stechemesser, A., Wenz, L. (2025): Neural topic modeling reveals German television’s climate change coverage. - Communications Earth and Environment, 6, 441.
https://doi.org/10.1038/s43247-025-02402-1

Item is

Dateien

einblenden: Dateien
ausblenden: Dateien
:
32306oa.pdf (Verlagsversion), 2MB
Name:
32306oa.pdf
Beschreibung:
-
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-

Externe Referenzen

einblenden:
ausblenden:
externe Referenz:
https://zenodo.org/records/15333784 (Ergänzendes Material)
Beschreibung:
Code and Data

Urheber

einblenden:
ausblenden:
 Urheber:
Schirmag, Tatjana1, Autor              
Wedemeyer, Jakob1, Autor              
Stechemesser, Annika1, Autor              
Wenz, Leonie1, 2, Autor              
Affiliations:
1Potsdam Institute for Climate Impact Research, ou_persistent13              
2Submitting Corresponding Author, Potsdam Institute for Climate Impact Research, ou_29970              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: The implementation and acceptance of climate policies depend on public perceptions of climate change. The media play a crucial role in informing the public discourse. While previous research has predominantly focused on written news, television remains the primary source of information globally. Here, we present an algorithm based on natural language processing techniques for identifying climate change coverage from subtitles of the leading German television news program, Tagesschau. Combining a dictionary approach with neural topic modeling, we classify the topics of over 28,000 news items (2015–2023). Our results show that climate change accounts for 4% of the total coverage, surpassed, for example, by sports coverage (9%). Acute crises, such as COVID-19, are covered more frequently and positioned more prominently. 80% of climate change coverage reports on climate policy, while only 10% covers climate impacts, like weather extremes. The latter tend to be covered in later news slots, indicating lower news value.

Details

einblenden:
ausblenden:
Sprache(n): eng - Englisch
 Datum: 2025-05-192025-06-062025-06-06
 Publikationsstatus: Final veröffentlicht
 Seiten: 11
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: Expertenbegutachtung
 Identifikatoren: DOI: 10.1038/s43247-025-02402-1
PIKDOMAIN: RD4 - Complexity Science
Organisational keyword: RD4 - Complexity Science
PIKDOMAIN: RD5 - Climate Economics and Policy - MCC Berlin
Organisational keyword: RD5 - Climate Economics and Policy - MCC Berlin
Organisational keyword: Lab - Societal Transition and Well-being
Organisational keyword: Lab - Policy Evaluation
Research topic keyword: Climate Policy
Research topic keyword: Climate impacts
Regional keyword: Germany
Model / method: Machine Learning
MDB-ID: No MDB - stored outside PIK (see locators/paper)
OATYPE: Gold - DEAL Springer Nature
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Communications Earth and Environment
Genre der Quelle: Zeitschrift, SCI, Scopus, oa
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: -
Seiten: - Band / Heft: 6 Artikelnummer: 441 Start- / Endseite: - Identifikator: CoNE: https://publications.pik-potsdam.de/cone/journals/resource/communications-earth-environment
Publisher: Nature