Deutsch
 
Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Data-driven global ocean modeling for seasonal to decadal prediction

Guo, Z., Lyu, P., Ling, F., Bai, L., Luo, J.-J., Boers, N., Yamagata, T., Izumo, T., Cravatte, S., Capotondi, A., Ouyang, W. (2025): Data-driven global ocean modeling for seasonal to decadal prediction. - Science Advances, 11, 33, eadu2488.
https://doi.org/10.1126/sciadv.adu2488

Item is

Dateien

einblenden: Dateien
ausblenden: Dateien
:
Guo_2025_sciadv.adu2488.pdf (Verlagsversion), 9MB
Name:
Guo_2025_sciadv.adu2488.pdf
Beschreibung:
-
OA-Status:
Gold
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-

Externe Referenzen

einblenden:
ausblenden:
externe Referenz:
https://zenodo.org/records/15383228 (Code)
Beschreibung:
-
OA-Status:
Keine Angabe

Urheber

einblenden:
ausblenden:
 Urheber:
Guo, Zijie1, Autor
Lyu, Pumeng1, Autor
Ling, Fenghua1, Autor
Bai, Lei1, Autor
Luo, Jing-Jia1, Autor
Boers, Niklas2, Autor                 
Yamagata, Toshio1, Autor
Izumo, Takeshi1, Autor
Cravatte, Sophie1, Autor
Capotondi, Antonietta1, Autor
Ouyang, Wanli1, Autor
Affiliations:
1External Organizations, ou_persistent22              
2Potsdam Institute for Climate Impact Research, ou_persistent13              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: Accurate modeling of ocean dynamics is crucial for enhancing our understanding of complex ocean circulation processes, predicting climate variability, and tackling challenges posed by climate change. Although great efforts have been made to improve traditional numerical models, predicting global ocean variability over multiyear scales remains challenging. Here, we propose ORCA-DL (Oceanic Reliable foreCAst via Deep Learning), a data-driven three-dimensional ocean model for seasonal to decadal prediction of global ocean dynamics. ORCA-DL accurately simulates the three-dimensional structure of global ocean dynamics with high physical consistency and outperforms state-of-the-art numerical models in capturing extreme events, including El Niño–Southern Oscillation and upper ocean heat waves. Moreover, ORCA-DL stably emulates ocean dynamics at decadal timescales, demonstrating its potential even for skillful decadal predictions and climate projections. Our results demonstrate the high potential of data-driven models for providing efficient and accurate global ocean modeling and prediction.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2025-08-132025-08-13
 Publikationsstatus: Final veröffentlicht
 Seiten: 12
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: Expertenbegutachtung
 Identifikatoren: DOI: 10.1126/sciadv.adu2488
MDB-ID: No MDB - stored outside PIK (see locators/paper)
PIKDOMAIN: RD4 - Complexity Science
Organisational keyword: RD4 - Complexity Science
Working Group: Artificial Intelligence
Model / method: Machine Learning
Model / method: Nonlinear Data Analysis
Research topic keyword: Tipping Elements
OATYPE: Gold Open Access
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Science Advances
Genre der Quelle: Zeitschrift, SCI, Scopus, p3, oa
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: -
Seiten: - Band / Heft: 11 (33) Artikelnummer: eadu2488 Start- / Endseite: - Identifikator: CoNE: https://publications.pik-potsdam.de/cone/journals/resource/161027
Publisher: American Association for the Advancement of Science (AAAS)