Deutsch
 
Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

 
 
DownloadE-Mail
  Market-based wind power investments under financial frictions

Rosenlund Soysal, E. (2025): Market-based wind power investments under financial frictions. - Applied Energy, 391, 125425.
https://doi.org/10.1016/j.apenergy.2025.125425

Item is

Dateien

einblenden: Dateien
ausblenden: Dateien
:
1-s2.0-S0306261925001552-main.pdf (Verlagsversion), 2MB
Name:
1-s2.0-S0306261925001552-main.pdf
Beschreibung:
-
OA-Status:
Hybrid
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Rosenlund Soysal, Emilie1, 2, Autor           
Affiliations:
1Potsdam Institute for Climate Impact Research, Potsdam, ou_persistent13              
2Submitting Corresponding Author, Potsdam Institute for Climate Impact Research, ou_29970              

Inhalt

einblenden:
ausblenden:
Schlagwörter: Cost of capital, Default risk, Carbon pricing, Forecasting, Machine learning
 Zusammenfassung: As support mechanisms aimed at promoting investment in renewable energy are phased out, producers must consider electricity market risk. Market price exposure affects economic feasibility of investment by making producers’ revenue stream vulnerable to the merit-order effect and by increasing revenue risk, which leads to higher costs of capital. The cost of capital is detrimental to the profitability of capital-intensive renewable energy sources, such as wind and solar power. To analyse the connection between electricity market exposure, the merit-order effect and the financing costs of wind power, this paper models the cost of capital of wind power investments in West-Denmark based on simulated return distributions. The return distributions are generated using a novel price forecasting model, an Adaptive Network-based Fuzzy Inference System, that predicts hourly prices from the residual load, natural gas price, and carbon price. Although it is a purely data-driven model, it reproduces the merit-order effect. The results emphasise the importance of recognising the endogenous changes in financing costs for accurate assessments of the profitability of wind power projects and the design of effective policies for incentivising renewable energy investments. The findings suggest that a higher carbon price can improve revenue distributions and lower financing costs, but its effectiveness diminishes at high levels of installed wind capacity.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2024-02-132025-01-222025-04-212025-08-01
 Publikationsstatus: Final veröffentlicht
 Seiten: 17
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: Expertenbegutachtung
 Identifikatoren: DOI: 10.1016/j.apenergy.2025.125425
PIKDOMAIN: RD5 - Climate Economics and Policy - MCC Berlin
Organisational keyword: RD5 - Climate Economics and Policy - MCC Berlin
Working Group: Public Economics and Climate Finance
Research topic keyword: Carbon Pricing
Model / method: Machine Learning
MDB-ID: No data to archive
OATYPE: Hybrid - DEAL Elsevier
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden: ausblenden:
Projektname : FINFAIL
Grant ID : 01LN1703A
Förderprogramm : -
Förderorganisation : Bundesministerium für Bildung und Forschung (BMBF)

Quelle 1

einblenden:
ausblenden:
Titel: Applied Energy
Genre der Quelle: Zeitschrift, SCI, Scopus, p3
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: -
Seiten: - Band / Heft: 391 Artikelnummer: 125425 Start- / Endseite: - Identifikator: CoNE: https://publications.pik-potsdam.de/cone/journals/resource/0910
Publisher: Elsevier