Deutsch
 
Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Key Drivers of Flash Flood Damage to Private Households

Rodríguez Castro, D., Rafiezadeh Shahi, K., Sairam, N., Fischer, M., Samprogna Mohor, G., Thieken, A., Dewals, B., Kreibich, H. (2025): Key Drivers of Flash Flood Damage to Private Households. - Journal of Flood Risk Management, 18, 3, e70088.
https://doi.org/10.1111/jfr3.70088

Item is

Dateien

einblenden: Dateien
ausblenden: Dateien
:
32935oa.pdf (Verlagsversion), 3MB
Name:
32935oa.pdf
Beschreibung:
-
OA-Status:
Gold
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Rodríguez Castro, Daniela1, Autor
Rafiezadeh Shahi, Kasra2, Autor                 
Sairam, Nivedita1, Autor
Fischer, Melanie1, Autor
Samprogna Mohor, Guilherme1, Autor
Thieken, Annegret1, Autor
Dewals, Benjamin1, Autor
Kreibich, Heidi1, Autor
Affiliations:
1External Organizations, ou_persistent22              
2Potsdam Institute for Climate Impact Research, ou_persistent13              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: Flash floods cause high numbers of casualties and enormous economic damage. Good knowledge of the damage processes is crucial for the implementation of effective flash flood risk management. However, little is known about the damage processes that occur during flash floods, despite their severity. To gain more knowledge, independent data collection initiatives were carried out in the affected areas of Belgium and Germany after the 2021 floods. The resulting datasets include 420 damaged residential buildings in the Vesdre valley in Belgium, 277 in the Ahr valley in Rhineland-Palatinate (Germany) and 332 in North Rhine-Westphalia (Germany). A total of 30 potential damage-influencing variables were harmonized across the regions, providing valuable insights into hazard characteristics, the vulnerability of exposed assets, the coping capacity of inhabitants, and socio-economic factors. Machine learning-based analysis reveals the significant importance of hazard variables, such as water depth and sediment transport, particularly for building damage. In addition to these, exposure (living area) and physical vulnerability factors (building type and wall type) also play a role in determining building damage across the affected regions. For content damage, besides water depth and living area, socio-economic vulnerability (ownership status of the building) and emergency measures were found to be important predictors. These key drivers of building and content damage from flash floods can be utilized to develop more accurate damage models, thereby improving flash flood risk assessments, enhancing risk communication, and supporting better preparedness strategies.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2025-07-252025-07-25
 Publikationsstatus: Final veröffentlicht
 Seiten: 22
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: Expertenbegutachtung
 Identifikatoren: DOI: 10.1111/jfr3.70088
PIKDOMAIN: RD1 - Earth System Analysis
Organisational keyword: RD1 - Earth System Analysis
Organisational keyword: Lab - Planetary Boundaries Science
MDB-ID: No data to archive
OATYPE: Gold Open Access
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Journal of Flood Risk Management
Genre der Quelle: Zeitschrift, oa
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: -
Seiten: - Band / Heft: 18 (3) Artikelnummer: e70088 Start- / Endseite: - Identifikator: CoNE: https://publications.pik-potsdam.de/cone/journals/resource/1753-318X
Publisher: Wiley