Deutsch
 
Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

 
 
DownloadE-Mail
  Eigen microstate analysis unveils climate dynamics

Tu, H., Wang, S., Meng, J., Zhang, Y., Chen, X., Chen, D., Fan, J. (2025): Eigen microstate analysis unveils climate dynamics. - Science China Physics, Mechanics and Astronomy, 68, 240511.
https://doi.org/10.1007/s11433-024-2586-2

Item is

Dateien

einblenden: Dateien
ausblenden: Dateien
:
Tu_2025_s11433-024-2586-2.pdf (Verlagsversion), 4MB
 
Datei-Permalink:
-
Name:
Tu_2025_s11433-024-2586-2.pdf
Beschreibung:
-
OA-Status:
Sichtbarkeit:
Privat
MIME-Typ / Prüfsumme:
application/pdf
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-
Lizenz:
-

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Tu, Hua1, Autor
Wang, Shang1, Autor
Meng, Jun1, Autor
Zhang, Yongwen1, Autor
Chen, Xiaosong1, Autor
Chen, Deliang1, Autor
Fan, Jingfang2, Autor           
Affiliations:
1External Organizations, ou_persistent22              
2Potsdam Institute for Climate Impact Research, ou_persistent13              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: The Earth’s climate operates as a complex, dynamically interconnected system, driven by both anthropogenic and natural forcings and modulated by nonlinear interactions and feedback loops. This study employs a theoretical framework and the Eigen Microstate (EM) approach of statistical physics to examine global surface temperature variations since 1948, as revealed by a global reanalysis. We identified EMs significantly correlated with key climate phenomena such as the global monsoon system, tropical climates, and El Niño. Our analysis reveals that these EMs have increasingly influenced global surface temperature variations over recent decades, highlighting the critical roles of hemispheric differences, land-sea contrasts, and tropical climate fluctuations in a warming world. Additionally, we used model simulations from more than 10 Coupled Model Intercomparison Project Phase 6 (CMIP6) under three future climate scenarios to perform a comparative analysis of the changes in each EM contribution. The results indicate that under future warming scenarios, tropical climate fluctuations will become increasingly dominant, while traditional hemispheric and monsoonal patterns may decline. This shift underscores the importance of understanding tropical dynamics and their impact on global climate from a physics-based perspective. Our study provides a new perspective on understanding and addressing global climate change, enhancing the theoretical foundation of this critical field, and yielding findings with significant practical implications for improving climate models and developing effective mitigation and adaptation strategies.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2025-02-182025-02-18
 Publikationsstatus: Final veröffentlicht
 Seiten: 10
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: Expertenbegutachtung
 Identifikatoren: DOI: 10.1007/s11433-024-2586-2
MDB-ID: No data to archive
PIKDOMAIN: RD4 - Complexity Science
Organisational keyword: RD4 - Complexity Science
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Science China Physics, Mechanics and Astronomy
Genre der Quelle: Zeitschrift, SCI, Scopus, p3
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: -
Seiten: - Band / Heft: 68 Artikelnummer: 240511 Start- / Endseite: - Identifikator: CoNE: https://publications.pik-potsdam.de/cone/journals/resource/journals443
Publisher: Springer