Deutsch
 
Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  PSLSA v2.0: An automatic Python package integrating machine learning models for regional landslide susceptibility assessment

Guo, Z., Wang, H., He, J., Huang, D., Song, Y., Wang, T., Liu, Y., Ferrer, J. V. (2025): PSLSA v2.0: An automatic Python package integrating machine learning models for regional landslide susceptibility assessment. - Environmental Modelling and Software, 186, 106367.
https://doi.org/10.1016/j.envsoft.2025.106367

Item is

Dateien

einblenden: Dateien
ausblenden: Dateien
:
Guo_2025_1-s2.0-S1364815225000519-main.pdf (Verlagsversion), 21MB
 
Datei-Permalink:
-
Name:
Guo_2025_1-s2.0-S1364815225000519-main.pdf
Beschreibung:
-
OA-Status:
Sichtbarkeit:
Privat
MIME-Typ / Prüfsumme:
application/pdf
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-
Lizenz:
-

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Guo, Zizheng1, Autor
Wang, Haojie1, Autor
He, Jun1, Autor
Huang, Da1, Autor
Song, Yixiang1, Autor
Wang, Tengfei1, Autor
Liu, Yuanbo1, Autor
Ferrer, Joaquin Vicente2, Autor           
Affiliations:
1External Organizations, ou_persistent22              
2Potsdam Institute for Climate Impact Research, ou_persistent13              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: Accurate landslide susceptibility assessments (LSA) are crucial for civil protection and land use planning. This study introduces PSLSA v2.0 as an open-source Python package that can conduct LSA automatically. It integrates six sophisticated machine learning algorithms (C5.0, SVM, LR, RF, MLP, XGBoost), and allows arbitrary combinations of influencing factors to generate landslide susceptibility index (LSI). We demonstrate how factor contribution and hyperparameter optimization as additional outputs can enhance the model interpretability. We apply PSLSA to a case study focused from Linzhi City in the Tibetan Plateau of China, that has undergone significant engineering modifications on its slopes. The results reveal that slope and aspect are the dominant factors in determining landslide susceptibility. All the six algorithms have an accuracy of over 80%. Although the distribution patterns of LSI vary, the C5.0 model is set apart with the best performance. PSLSA provides a powerful tool for stakeholders especially the non-geohazard professionals.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2025-02-112025-03-01
 Publikationsstatus: Final veröffentlicht
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: Expertenbegutachtung
 Identifikatoren: DOI: 10.1016/j.envsoft.2025.106367
MDB-ID: No data to archive
PIKDOMAIN: RD4 - Complexity Science
Organisational keyword: RD4 - Complexity Science
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Environmental Modelling and Software
Genre der Quelle: Zeitschrift, SCI, Scopus, p3
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: -
Seiten: - Band / Heft: 186 Artikelnummer: 106367 Start- / Endseite: - Identifikator: CoNE: https://publications.pik-potsdam.de/cone/journals/resource/journals127
Publisher: Elsevier