hide
Free keywords:
Climate-change mitigation, Environmental studies, Science, technology and society
Abstract:
Many cities are interested in leveraging artificial intelligence and machine learning (ML) to help urban climate change mitigation (UCCM). Researchers and practitioners, however, are only beginning to understand how ML can contribute to achieving climate targets in cities. Here, we systematically map 2,300 peer-reviewed articles published between 1994 and 2024 that explore the use of ML in UCCM. We find that, despite fast growth in this research area, the use of generative artificial intelligence and large language models remains negligible, which contrasts to their increasing adoption in other urban domains. Among 40 identified application areas, ML research focuses predominantly on high-impact mitigation options denoted by the Intergovernmental Panel on Climate Change. This trend may partly be driven by data availability and commercial interest, which risk perpetuating geographic inequities and diverting efforts toward less impactful mitigation options. We therefore offer recommendations to guide the impactful deployment of ML solutions in UCCM.