Deutsch
 
Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  AI for a Planet Under Pressure

Galaz, V., Schewenius, M., Donges, J. F., Fetzer, I., Zhivkoplias, E., Barfuss, W., Delannoy, L., Wang-Erlandsson, L., Gelbrecht, M., Heitzig, J., Hentati-Sundberg, J., Kennedy, C., Knecht, N., Lotcheris, R., Mahecha, M., Merrie, A., Montero, D., McPhearson, T., Mustafa, A., Nyström, M., Purves, D., Rocha, J. C., Masahiro, R., van der Salm, C., Segun, S. T., Stephenson, A. B., Tellman, E., Tobar, F., Vadrot, A. (2025): AI for a Planet Under Pressure, Stockholm : Stockholm Resilience Centre, Potsdam Institute for Climate Impact Research, 88 p.
https://doi.org/10.48550/arXiv.2510.24373

Item is

Dateien

einblenden: Dateien
ausblenden: Dateien
:
2510.24373v3.pdf (Verlagsversion), 12MB
Name:
2510.24373v3.pdf
Beschreibung:
-
OA-Status:
Keine Angabe
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-
Lizenz:
-

Externe Referenzen

einblenden:
ausblenden:
Beschreibung:
-
OA-Status:
Keine Angabe

Urheber

einblenden:
ausblenden:
 Urheber:
Galaz, Victor1, Autor
Schewenius, Maria1, Autor
Donges, Jonathan Friedemann2, Autor                 
Fetzer, Ingo2, Autor
Zhivkoplias, Erik1, Autor
Barfuss, Wolfram2, Autor                 
Delannoy, Louis1, Autor
Wang-Erlandsson, Lan2, Autor           
Gelbrecht, Maximilian2, Autor           
Heitzig, Jobst2, Autor                 
Hentati-Sundberg, Jonas1, Autor
Kennedy, Christopher1, Autor
Knecht, Nielja1, Autor
Lotcheris, Romi1, Autor
Mahecha, Miguel1, Autor
Merrie, Andrew1, Autor
Montero, David1, Autor
McPhearson, Timon1, Autor
Mustafa, Ahmed1, Autor
Nyström, Magnus 1, Autor
Purves, Drew1, AutorRocha, Juan C.1, AutorMasahiro, Ryo1, Autorvan der Salm, Claudia1, AutorSegun, Samuel T. 1, AutorStephenson, Anna B.1, AutorTellman, Elizabeth1, AutorTobar, Felipe1, AutorVadrot, Alice1, Autor mehr..
Affiliations:
1External Organizations, ou_persistent22              
2Potsdam Institute for Climate Impact Research, ou_persistent13              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: Artificial intelligence (AI) is already driving scientific breakthroughs in a variety of research fields, ranging from the life sciences to mathematics. This raises a critical question: can AI be applied both responsibly and effectively to address complex and interconnected sustainability challenges? This report is the result of a collaboration between the Stockholm resilience Centre (Stockholm University), the Potsdam Institute for Climate Impact Research (PIK), and Google DeepMind. Our work explores the potential and limitations of using AI as a research method to help tackle eight broad sustainability challenges. The results build on iterated expert dialogues and assessments, a systematic AI-supported literature overview including over 8,500 academic publications, and expert deep-dives into eight specific issue areas. The report also includes recommendations to sustainability scientists, research funders, the private sector, and philanthropies.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2025-10-282025-11-01
 Publikationsstatus: Final veröffentlicht
 Seiten: 88
 Ort, Verlag, Ausgabe: Stockholm : Stockholm Resilience Centre, Potsdam Institute for Climate Impact Research
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: DOI: 10.48550/arXiv.2510.24373
PIKDOMAIN: Earth Resilience Science Unit - ERSU
Organisational keyword: Earth Resilience Science Unit - ERSU
PIKDOMAIN: RD1 - Earth System Analysis
Organisational keyword: RD1 - Earth System Analysis
PIKDOMAIN: RD4 - Complexity Science
Organisational keyword: RD4 - Complexity Science
Working Group: Behavioural Game Theory and Interacting Agents
Research topic keyword: Cities
Research topic keyword: Climate Policy
Research topic keyword: Freshwater
Research topic keyword: Inequality and Equity
Research topic keyword: Oceans
Research topic keyword: Planetary Boundaries
Research topic keyword: Sustainable Development
Research topic keyword: Tipping Elements
Regional keyword: Global
Model / method: Machine Learning
MDB-ID: No data to archive
ISBN: 978-91-89107-61-8
ISBN: 978-91-89107-62-5
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle

einblenden: