English
 
Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
 
 
DownloadE-Mail
  AI for a Planet Under Pressure

Galaz, V., Schewenius, M., Donges, J. F., Fetzer, I., Zhivkoplias, E., Barfuss, W., Delannoy, L., Wang-Erlandsson, L., Gelbrecht, M., Heitzig, J., Hentati-Sundberg, J., Kennedy, C., Knecht, N., Lotcheris, R., Mahecha, M., Merrie, A., Montero, D., McPhearson, T., Mustafa, A., Nyström, M., Purves, D., Rocha, J. C., Masahiro, R., van der Salm, C., Segun, S. T., Stephenson, A. B., Tellman, E., Tobar, F., Vadrot, A. (2025): AI for a Planet Under Pressure, Stockholm : Stockholm Resilience Centre, Potsdam Institute for Climate Impact Research, 88 p.
https://doi.org/10.48550/arXiv.2510.24373

Item is

Files

show Files
hide Files
:
2510.24373v3.pdf (Publisher version), 12MB
Name:
2510.24373v3.pdf
Description:
-
OA-Status:
Not specified
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-

Locators

show
hide
Description:
-
OA-Status:
Not specified

Creators

show
hide
 Creators:
Galaz, Victor1, Author
Schewenius, Maria1, Author
Donges, Jonathan Friedemann2, Author                 
Fetzer, Ingo2, Author
Zhivkoplias, Erik1, Author
Barfuss, Wolfram2, Author                 
Delannoy, Louis1, Author
Wang-Erlandsson, Lan2, Author           
Gelbrecht, Maximilian2, Author           
Heitzig, Jobst2, Author                 
Hentati-Sundberg, Jonas1, Author
Kennedy, Christopher1, Author
Knecht, Nielja1, Author
Lotcheris, Romi1, Author
Mahecha, Miguel1, Author
Merrie, Andrew1, Author
Montero, David1, Author
McPhearson, Timon1, Author
Mustafa, Ahmed1, Author
Nyström, Magnus 1, Author
Purves, Drew1, AuthorRocha, Juan C.1, AuthorMasahiro, Ryo1, Authorvan der Salm, Claudia1, AuthorSegun, Samuel T. 1, AuthorStephenson, Anna B.1, AuthorTellman, Elizabeth1, AuthorTobar, Felipe1, AuthorVadrot, Alice1, Author more..
Affiliations:
1External Organizations, ou_persistent22              
2Potsdam Institute for Climate Impact Research, ou_persistent13              

Content

show
hide
Free keywords: -
 Abstract: Artificial intelligence (AI) is already driving scientific breakthroughs in a variety of research fields, ranging from the life sciences to mathematics. This raises a critical question: can AI be applied both responsibly and effectively to address complex and interconnected sustainability challenges? This report is the result of a collaboration between the Stockholm resilience Centre (Stockholm University), the Potsdam Institute for Climate Impact Research (PIK), and Google DeepMind. Our work explores the potential and limitations of using AI as a research method to help tackle eight broad sustainability challenges. The results build on iterated expert dialogues and assessments, a systematic AI-supported literature overview including over 8,500 academic publications, and expert deep-dives into eight specific issue areas. The report also includes recommendations to sustainability scientists, research funders, the private sector, and philanthropies.

Details

show
hide
Language(s): eng - English
 Dates: 2025-10-282025-11-01
 Publication Status: Finally published
 Pages: 88
 Publishing info: Stockholm : Stockholm Resilience Centre, Potsdam Institute for Climate Impact Research
 Table of Contents: -
 Rev. Type: -
 Identifiers: DOI: 10.48550/arXiv.2510.24373
PIKDOMAIN: Earth Resilience Science Unit - ERSU
Organisational keyword: Earth Resilience Science Unit - ERSU
PIKDOMAIN: RD1 - Earth System Analysis
Organisational keyword: RD1 - Earth System Analysis
PIKDOMAIN: RD4 - Complexity Science
Organisational keyword: RD4 - Complexity Science
Working Group: Behavioural Game Theory and Interacting Agents
Research topic keyword: Cities
Research topic keyword: Climate Policy
Research topic keyword: Freshwater
Research topic keyword: Inequality and Equity
Research topic keyword: Oceans
Research topic keyword: Planetary Boundaries
Research topic keyword: Sustainable Development
Research topic keyword: Tipping Elements
Regional keyword: Global
Model / method: Machine Learning
MDB-ID: No data to archive
ISBN: 978-91-89107-61-8
ISBN: 978-91-89107-62-5
 Degree: -

Event

show

Legal Case

show

Project information

show

Source

show