Deutsch
 
Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Quantifying Disorder in Data

Vieira Flauzino, J. V., Prado, T. L., Marwan, N., Kurths, J., Lopes, S. R. (2025): Quantifying Disorder in Data. - Physical Review Letters, 135, 9, 097401.
https://doi.org/10.1103/1y98-x33s

Item is

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Vieira Flauzino, Joao Vitor1, Autor           
Prado, Thiago Lima2, Autor
Marwan, Norbert1, Autor                 
Kurths, Jürgen1, Autor           
Lopes, Sergio Roberto2, Autor
Affiliations:
1Potsdam Institute for Climate Impact Research, ou_persistent13              
2External Organizations, ou_persistent22              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: The quantification of disorder in data remains a fundamental challenge in science, as many phenomena yield short length datasets with order-disorder behavior, significant (un)correlated fluctuations, and indistinguishable characteristics even when arising from distinct natures, such as chaotic or stochastic processes. In this Letter, we propose a novel method to directly quantify disorder in data through recurrence microstate analysis, showing that maximizing this measure is essential for its optimal estimation. Our approach reveals that the disorder condition corresponds to the action of the symmetric group on recurrence space, producing classes of equiprobable recurrence microstates. By leveraging information entropy, we define a robust quantifier that reliably differentiates between chaotic, correlated, and uncorrelated stochastic signals even using just small time series. Additionally, it uncovers the characteristics of corrupting noise in dynamical systems. As an application, we show that disorder minima over time often align with well-known stage transitions of the Cenozoic era, indicating periods of dominant drivers in paleoclimatic data.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2025-08-262025-08-26
 Publikationsstatus: Final veröffentlicht
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: Expertenbegutachtung
 Identifikatoren: DOI: 10.1103/1y98-x33s
MDB-ID: No data to archive
PIKDOMAIN: RD4 - Complexity Science
Organisational keyword: RD4 - Complexity Science
Working Group: Development of advanced time series analysis techniques
Research topic keyword: Nonlinear Dynamics
Research topic keyword: Paleoclimate
Regional keyword: Global
Model / method: Nonlinear Data Analysis
Model / method: Quantitative Methods
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Physical Review Letters
Genre der Quelle: Zeitschrift, SCI, Scopus, p3
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: -
Seiten: - Band / Heft: 135 (9) Artikelnummer: 097401 Start- / Endseite: - Identifikator: CoNE: https://publications.pik-potsdam.de/cone/journals/resource/journals391
Publisher: American Physical Society (APS)