Deutsch
 
Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

 
 
DownloadE-Mail
  RecurrenceMicrostatesAnalysis.jl: A Julia library for analyzing dynamical systems with recurrence microstates

Ferreira, G. V., da Cruz, F. E. L., Marghoti, G., de Prado, T. L., Lopes, S. R., Marwan, N., Kurths, J. (2025): RecurrenceMicrostatesAnalysis.jl: A Julia library for analyzing dynamical systems with recurrence microstates. - Chaos, 35, 11, 113123.
https://doi.org/10.1063/5.0293708

Item is

Dateien

einblenden: Dateien
ausblenden: Dateien
:
33291oa.pdf (Verlagsversion), 4MB
 
Datei-Permalink:
-
Name:
33291oa.pdf
Beschreibung:
-
OA-Status:
Sichtbarkeit:
Privat (Embargo bis 2026-11-19)
MIME-Typ / Prüfsumme:
application/pdf
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-
Lizenz:
-

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Ferreira, Gabriel Vinicius1, Autor
da Cruz, Felipe Eduardo Lopes1, Autor
Marghoti, Gabriel1, Autor
de Prado, Thiago Lima1, Autor
Lopes, Sergio Roberto1, Autor
Marwan, Norbert2, Autor                 
Kurths, Jürgen2, Autor           
Affiliations:
1External Organizations, ou_persistent22              
2Potsdam Institute for Climate Impact Research, ou_persistent13              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: Recurrence Quantification Analysis (RQA) has become a standard tool for extracting nonlinear characteristics from time series. It relies on specific recurrence structures within Recurrence Plots, such as diagonal lines that are typically associated with deterministic dynamics. However, its scope is often constrained by the use of predefined patterns. To overcome this limitation, we have recently proposed Recurrence Microstates Analysis (RMA)—an advanced approach that generalizes the analysis of recurrence structures by capturing the statistical properties of generic recurrence motifs. In this paper, we introduce an efficient Julia package for RMA, which supports a wide range of motif shapes, flexible sampling strategies, and comprehensive distribution computation capabilities. Our implementation also features an optimized pipeline for estimating standard RQA quantifiers with significantly reduced memory and computational requirements, making it particularly well-suited for large-scale data sets and, thereby, supporting sustainable and green computing practices. RMA, thus, offers a robust, scalable, memory-efficient, and more versatile alternative to traditional RQA, with promising applications in machine learning and the study of dynamical systems.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2025-11-182025-11-18
 Publikationsstatus: Final veröffentlicht
 Seiten: 12
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: Expertenbegutachtung
 Identifikatoren: DOI: 10.1063/5.0293708
MDB-ID: No data to archive
PIKDOMAIN: RD4 - Complexity Science
Organisational keyword: RD4 - Complexity Science
Working Group: Development of advanced time series analysis techniques
Research topic keyword: Nonlinear Dynamics
Research topic keyword: Sustainable Development
Model / method: Open Source Software
Model / method: Nonlinear Data Analysis
Model / method: Quantitative Methods
Model / method: Research Software Engineering (RSE)
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Chaos
Genre der Quelle: Zeitschrift, SCI, Scopus, p3
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: -
Seiten: - Band / Heft: 35 (11) Artikelnummer: 113123 Start- / Endseite: - Identifikator: CoNE: https://publications.pik-potsdam.de/cone/journals/resource/180808
Publisher: American Institute of Physics (AIP)