Deutsch
 
Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

 
 
DownloadE-Mail
  A communicability-driven expert influence model for large-scale group decision-making based on complex network theory

Sun, F., Yi, Y., Zhu, W., Kurths, J. (2025): A communicability-driven expert influence model for large-scale group decision-making based on complex network theory. - Engineering Applications of Artificial Intelligence, 160, Part A, 111789.
https://doi.org/10.1016/j.engappai.2025.111789

Item is

Dateien

einblenden: Dateien
ausblenden: Dateien
:
Sun_2025_1-s2.0-S0952197625017919-main.pdf (Verlagsversion), 4MB
 
Datei-Permalink:
-
Name:
Sun_2025_1-s2.0-S0952197625017919-main.pdf
Beschreibung:
-
OA-Status:
Sichtbarkeit:
Privat
MIME-Typ / Prüfsumme:
application/pdf
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-
Lizenz:
-

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Sun, Fenglan1, Autor
Yi, Yuteng1, Autor
Zhu, Wei1, Autor
Kurths, Jürgen2, Autor           
Affiliations:
1External Organizations, ou_persistent22              
2Potsdam Institute for Climate Impact Research, ou_persistent13              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: This paper proposes a novel large-scale group decision-making (LSGDM) framework based on complex network theory. First, by enhancing the clustering efficiency of the Louvain algorithm through complex network theory, this framework enables community classification of a large-scale expert group, thereby reduce the complexity of the expert network and improve decision-making efficiency. Second, a novel communicability-driven expert influence identification model within expert social networks is designed, and a new consensus feedback mechanism is proposed. This approach comprehensively considers both the individual influence of experts and the impact of their interactions to guide consensus-reaching, which can accurately reflect the actual flow of information within the network. Third, by extending the Best–Worst Method and Shannon Entropy Method to the context of fuzzy information, a balance between subjectivity and objectivity is obtained, which can make more accurate and interpretable decision results. The proposed method is validated through a case study on green material selection. Moreover, its superiority is further demonstrated through comparative experiments. The results show that our method demonstrates a 9.89% reduction in opinion revision costs with accelerated consensus-reaching efficiency.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2025-07-302025-11-15
 Publikationsstatus: Final veröffentlicht
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: Expertenbegutachtung
 Identifikatoren: DOI: 10.1016/j.engappai.2025.111789
MDB-ID: No data to archive
PIKDOMAIN: RD4 - Complexity Science
Organisational keyword: RD4 - Complexity Science
Research topic keyword: Complex Networks
Model / method: Machine Learning
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Engineering Applications of Artificial Intelligence
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: -
Seiten: - Band / Heft: 160 (Part A) Artikelnummer: 111789 Start- / Endseite: - Identifikator: CoNE: https://publications.pik-potsdam.de/cone/journals/resource/1873-6769
Publisher: Elsevier