Deutsch
 
Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

 
 
DownloadE-Mail
  SDMG: Smoothing Your Diffusion Models for Powerful Graph Representation Learning

Zhu, J., He, L., Gao, C., Hou, D., Su, Z., Yu, P. S., Kurths, J., Hellmann, F. (2025): SDMG: Smoothing Your Diffusion Models for Powerful Graph Representation Learning - Proceedings of Machine Learning Research, International Conference on Machine Learning (Vancouver, Canada 2025), 21 p.

Item is

Dateien

einblenden: Dateien
ausblenden: Dateien
:
zhu25g.pdf (Verlagsversion), 2MB
Name:
zhu25g.pdf
Beschreibung:
-
OA-Status:
Keine Angabe
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-
Lizenz:
-

Externe Referenzen

einblenden:
ausblenden:
externe Referenz:
https://proceedings.mlr.press/v267/zhu25g.html (Verlagsversion)
Beschreibung:
-
OA-Status:
Keine Angabe

Urheber

einblenden:
ausblenden:
 Urheber:
Zhu, Junyou1, Autor           
He, Langzhou2, Autor
Gao, Chao2, Autor
Hou, Dongpeng2, Autor
Su, Zhen1, Autor           
Yu, Philip S.2, Autor
Kurths, Jürgen1, Autor           
Hellmann, Frank1, Autor                 
Affiliations:
1Potsdam Institute for Climate Impact Research, ou_persistent13              
2External Organizations, ou_persistent22              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: Diffusion probabilistic models (DPMs) have recently demonstrated impressive generative capabilities. There is emerging evidence that their sample reconstruction ability can yield meaningful representations for recognition tasks. In this paper, we demonstrate that the objectives underlying generation and representation learning are not perfectly aligned. Through a spectral analysis, we find that minimizing the mean squared error (MSE) between the original graph and its reconstructed counterpart does not necessarily optimize representations for downstream tasks. Instead, focusing on reconstructing a small subset of features, specifically those capturing global information, proves to be more effective for learning powerful representations. Motivated by these insights, we propose a novel framework, the Smooth Diffusion Model for Graphs (SDMG), which introduces a multi-scale smoothing loss and low-frequency information encoders to promote the recovery of global, low-frequency details, while suppressing irrelevant high-frequency noise. Extensive experiments validate the effectiveness of our method, suggesting a promising direction for advancing diffusion models in graph representation learning.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2025-112025-11-112025-11-11
 Publikationsstatus: Final veröffentlicht
 Seiten: 21
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: Expertenbegutachtung
 Identifikatoren: MDB-ID: No data to archive
PIKDOMAIN: RD4 - Complexity Science
Organisational keyword: RD4 - Complexity Science
Research topic keyword: Complex Networks
Model / method: Machine Learning
Model / method: Nonlinear Data Analysis
 Art des Abschluß: -

Veranstaltung

einblenden:
ausblenden:
Titel: International Conference on Machine Learning
Veranstaltungsort: Vancouver, Canada
Start-/Enddatum: 2025-07-13 - 2025-07-19

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Proceedings of Machine Learning Research
Genre der Quelle: Konferenzband
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: -
Seiten: - Band / Heft: 267 Artikelnummer: - Start- / Endseite: - Identifikator: ISSN: 2640-3498