Privacy Policy Disclaimer
  Advanced SearchBrowse




Journal Article

Climate impact on spreading of airborne infectious diseases


Brenner,  Frank
Potsdam Institute for Climate Impact Research;


Marwan,  Norbert
Potsdam Institute for Climate Impact Research;


Hoffmann,  Peter
Potsdam Institute for Climate Impact Research;

External Ressource
No external resources are shared
Fulltext (public)
There are no public fulltexts stored in PIKpublic
Supplementary Material (public)
There is no public supplementary material available

Brenner, F., Marwan, N., Hoffmann, P. (2017): Climate impact on spreading of airborne infectious diseases. - European Physical Journal - Special Topics, 226, 9, 1845-1856.

Cite as: https://publications.pik-potsdam.de/pubman/item/item_21779
In this study we combined a wide range of data sets to simulate the outbreak of an airborne infectious disease that is directly transmitted from human to human. The basis is a complex network whose structures are inspired by global air traffic data (from openflights.org) containing information about airports, airport locations, direct flight connections and airplane types. Disease spreading inside every node is realized with a Susceptible-Exposed-Infected-Recovered (SEIR) compartmental model. Disease transmission rates in our model are depending on the climate environment and therefore vary in time and from node to node. To implement the correlation between water vapor pressure and influenza transmission rate [J. Shaman, M. Kohn, Proc. Natl. Acad. Sci. 106, 3243 (2009)], we use global available climate reanalysis data (WATCH-Forcing-Data-ERA-Interim, WFDEI). During our sensitivity analysis we found that disease spreading dynamics are strongly depending on network properties, the climatic environment of the epidemic outbreak location, and the season during the year in which the outbreak is happening.