日本語
 
Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細


公開

学術論文

The biosphere under potential Paris outcomes

Authors
/persons/resource/sebastian.ostberg

Ostberg,  Sebastian
Potsdam Institute for Climate Impact Research;

/persons/resource/boysen

Boysen,  Lena
Potsdam Institute for Climate Impact Research;

/persons/resource/Sibyll.Schaphoff

Schaphoff,  Sibyll
Potsdam Institute for Climate Impact Research;

/persons/resource/Wolfgang.Lucht

Lucht,  Wolfgang
Potsdam Institute for Climate Impact Research;

/persons/resource/Dieter.Gerten

Gerten,  Dieter
Potsdam Institute for Climate Impact Research;

URL
There are no locators available
フルテキスト (公開)

7933oa.pdf
(出版社版), 6MB

付随資料 (公開)
There is no public supplementary material available
引用

Ostberg, S., Boysen, L., Schaphoff, S., Lucht, W., & Gerten, D. (2018). The biosphere under potential Paris outcomes. Earth's Future, 6(1), 23-39. doi:10.1002/2017EF000628.


引用: https://publications.pik-potsdam.de/pubman/item/item_22192
要旨
Rapid economic and population growth over the last centuries have started to push the Earth out of its Holocene state into the Anthropocene. In this new era, ecosystems across the globe face mounting dual pressure from human land use change (LUC) and climate change (CC). With the Paris Agreement, the international community has committed to holding global warming below 2°C above preindustrial levels, yet current pledges by countries to reduce greenhouse gas emissions appear insufficient to achieve that goal. At the same time, the sustainable development goals strive to reduce inequalities between countries and provide sufficient food, feed, and clean energy to a growing world population likely to reach more than 9 billion by 2050. Here, we present a macro‐scale analysis of the projected impacts of both CC and LUC on the terrestrial biosphere over the 21st century using the Representative Concentration Pathways (RCPs) to illustrate possible trajectories following the Paris Agreement. We find that CC may cause major impacts in landscapes covering between 16% and 65% of the global ice‐free land surface by the end of the century, depending on the success or failure of achieving the Paris goal. Accounting for LUC impacts in addition, this number increases to 38%–80%. Thus, CC will likely replace LUC as the major driver of ecosystem change unless global warming can be limited to well below 2°C. We also find a substantial risk that impacts of agricultural expansion may offset some of the benefits of ambitious climate protection for ecosystems.