Deutsch
 
Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Transition from homogeneous to inhomogeneous limit cycles: Effect of local filtering in coupled oscillators

Urheber*innen

Banerjee,  T.
External Organizations;

Biswas,  D.
External Organizations;

Ghosh,  D.
External Organizations;

Bandyopadhyay,  B.
External Organizations;

/persons/resource/Juergen.Kurths

Kurths,  Jürgen
Potsdam Institute for Climate Impact Research;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PIKpublic verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Banerjee, T., Biswas, D., Ghosh, D., Bandyopadhyay, B., Kurths, J. (2018): Transition from homogeneous to inhomogeneous limit cycles: Effect of local filtering in coupled oscillators. - Physical Review E, 97, 4, 042218.
https://doi.org/10.1103/PhysRevE.97.042218


Zitierlink: https://publications.pik-potsdam.de/pubman/item/item_22686
Zusammenfassung
We report an interesting symmetry-breaking transition in coupled identical oscillators, namely, the continuous transition from homogeneous to inhomogeneous limit cycle oscillations. The observed transition is the oscillatory analog of the Turing-type symmetry-breaking transition from amplitude death (i.e., stable homogeneous steady state) to oscillation death (i.e., stable inhomogeneous steady state). This novel transition occurs in the parametric zone of occurrence of rhythmogenesis and oscillation death as a consequence of the presence of local filtering in the coupling path. We consider paradigmatic oscillators, such as Stuart-Landau and van der Pol oscillators, under mean-field coupling with low-pass or all-pass filtered self-feedback and through a rigorous bifurcation analysis we explore the genesis of this transition. Further, we experimentally demonstrate the observed transition, which establishes its robustness in the presence of parameter fluctuations and noise.