Privacy Policy Disclaimer
  Advanced SearchBrowse




Journal Article

Connection between the length of day and wind measurements in the mesosphere and lower thermosphere at mid- and high latitudes


Wilhelm,  S.
External Organizations;

Stober,  G.
External Organizations;


Matthias,  Vivien
Potsdam Institute for Climate Impact Research;

Jacobi,  C.
External Organizations;

Murphy,  D. J.
External Organizations;

External Ressource
No external resources are shared
Fulltext (public)

(Publisher version), 3MB

Supplementary Material (public)
There is no public supplementary material available

Wilhelm, S., Stober, G., Matthias, V., Jacobi, C., Murphy, D. J. (2019): Connection between the length of day and wind measurements in the mesosphere and lower thermosphere at mid- and high latitudes. - Annales Geophysicae, 37, 1, 1-14.

Cite as: https://publications.pik-potsdam.de/pubman/item/item_22877
This work presents a connection between the density variation within the mesosphere and lower thermosphere (MLT) and changes in the intensity of solar radiation. On a seasonal timescale, these changes take place due to the revolution of the Earth around the Sun. While the Earth, during the northern-hemispheric (NH) winter, is closer to the Sun, the upper mesosphere expands due to an increased radiation intensity, which results in changes in density at these heights. These density variations, i.e., a vertical redistribution of atmospheric mass, have an effect on the rotation rate of Earth's upper atmosphere owing to angular momentum conservation. In order to test this effect, we applied a theoretical model, which shows a decrease in the atmospheric rotation speed of about ∼4 m s−1 at a latitude of 45∘ in the case of a density change of 1 % between 70 and 100 km. To support this statement, we compare the wind variability obtained from meteor radar (MR) and Microwave Limb Sounder (MLS) satellite observations with fluctuations in the length of a day (LOD). Changes in the LOD on timescales of a year and less are primarily driven by tropospheric large-scale geophysical processes and their impact on the Earth's rotation. A global increase in lower-atmospheric eastward-directed winds leads, due to friction with the Earth's surface, to an acceleration of the Earth's rotation by up to a few milliseconds per rotation. The LOD shows an increase during northern winter and decreases during summer, which corresponds to changes in the MLT density due to the Earth–Sun movement. Within the MLT the mean zonal wind shows similar fluctuations to the LOD on annual scales as well as longer time series, which are connected to the seasonal wind regime as well as to density changes excited by variations in the solar radiation. A direct correlation between the local measured winds and the LOD on shorter timescales cannot clearly be identified, due to stronger influences of other natural oscillations on the wind. Further, we show that, even after removing the seasonal and 11-year solar cycle variations, the mean zonal wind and the LOD are connected by analyzing long-term tendencies for the years 2005–2016.