Deutsch
 
Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Network-induced multistability through lossy coupling and exotic solitary states

Urheber*innen
/persons/resource/frank.hellmann

Hellmann,  Frank
Potsdam Institute for Climate Impact Research;

/persons/resource/Paul.Schultz

Schultz,  Paul
Potsdam Institute for Climate Impact Research;

Jaros,  P.
External Organizations;

Levchenko,  R.
External Organizations;

Kapitaniak,  T.
External Organizations;

/persons/resource/Juergen.Kurths

Kurths,  Jürgen
Potsdam Institute for Climate Impact Research;

Maistrenko,  Y.
External Organizations;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (frei zugänglich)

8953oa.pdf
(Verlagsversion), 966KB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Hellmann, F., Schultz, P., Jaros, P., Levchenko, R., Kapitaniak, T., Kurths, J., Maistrenko, Y. (2020): Network-induced multistability through lossy coupling and exotic solitary states. - Nature Communications, 11, 592.
https://doi.org/10.1038/s41467-020-14417-7


Zitierlink: https://publications.pik-potsdam.de/pubman/item/item_23893
Zusammenfassung
The stability of synchronised networked systems is a multi-faceted challenge for many natural and technological fields, from cardiac and neuronal tissue pacemakers to power grids. For these, the ongoing transition to distributed renewable energy sources leads to a proliferation of dynamical actors. The desynchronisation of a few or even one of those would likely result in a substantial blackout. Thus the dynamical stability of the synchronous state has become a leading topic in power grid research. Here we uncover that, when taking into account physical losses in the network, the back-reaction of the network induces new exotic solitary states in the individual actors and the stability characteristics of the synchronous state are dramatically altered. These effects will have to be explicitly taken into account in the design of future power grids. We expect the results presented here to transfer to other systems of coupled heterogeneous Newtonian oscillators.