Deutsch
 
Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

A multiplex, multi-timescale model approach for economic and frequency control in power grids

Urheber*innen
/persons/resource/Lia.Strenge

Strenge,  Lia
Potsdam Institute for Climate Impact Research;

/persons/resource/Paul.Schultz

Schultz,  Paul
Potsdam Institute for Climate Impact Research;

/persons/resource/Juergen.Kurths

Kurths,  Jürgen
Potsdam Institute for Climate Impact Research;

Raisch,  J.
External Organizations;

/persons/resource/frank.hellmann

Hellmann,  Frank
Potsdam Institute for Climate Impact Research;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PIKpublic verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Strenge, L., Schultz, P., Kurths, J., Raisch, J., Hellmann, F. (2020): A multiplex, multi-timescale model approach for economic and frequency control in power grids. - Chaos, 30, 3, 033138.
https://doi.org/10.1063/1.5132335


Zitierlink: https://publications.pik-potsdam.de/pubman/item/item_24180
Zusammenfassung
Power systems are subject to fundamental changes due to the increasing infeed of decentralized renewable energy sources and storage. The decentralized nature of the new actors in the system requires new concepts for structuring the power grid and achieving a wide range of control tasks ranging from seconds to days. Here, we introduce a multiplex dynamical network model covering all control timescales. Crucially, we combine a decentralized, self-organized low-level control and a smart grid layer of devices that can aggregate information from remote sources. The safety-critical task of frequency control is performed by the former and the economic objective of demand matching dispatch by the latter. Having both aspects present in the same model allows us to study the interaction between the layers. Remarkably, we find that adding communication in the form of aggregation does not improve the performance in the cases considered. Instead, the self-organized state of the system already contains the information required to learn the demand structure in the entire grid. The model introduced here is highly flexible and can accommodate a wide range of scenarios relevant to future power grids. We expect that it is especially useful in the context of low-energy microgrids with distributed generation. Highly decentralized power grids, possibly in the context of prosumer systems, require new concepts for their stable operation. We expect that both self-organized systems and intelligent devices with communication capability that can aggregate information from remote sources will play a central role. Here, we introduce a multiplex network model that combines both aspects and use it in a basic scenario and uncover surprising interactions between the layers.