Deutsch
 
Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Global energy sector emission reductions and bioenergy use: overview of the bioenergy demand phase of the EMF-33 model comparison

Urheber*innen
/persons/resource/Nicolas.Bauer

Bauer,  Nicolas
Potsdam Institute for Climate Impact Research;

Rose,  Steven K.
External Organizations;

Fujimori,  Shinichiro
External Organizations;

van Vuuren,  Detlef P.
External Organizations;

Weyant,  John
External Organizations;

Wise,  Marshall
External Organizations;

Cui,  Yiyun
External Organizations;

Daioglou,  Vassilis
External Organizations;

Gidden,  Matthew J.
External Organizations;

Kato,  Etsushi
External Organizations;

Kitous,  Alban
External Organizations;

Leblanc,  Florian
External Organizations;

Sands,  Ronald
External Organizations;

Sano,  Fuminori
External Organizations;

/persons/resource/Jessica.Strefler

Strefler,  Jessica
Potsdam Institute for Climate Impact Research;

Tsutsui,  Junichi
External Organizations;

Bibas,  Ruben
External Organizations;

Fricko,  Oliver
External Organizations;

Hasegawa,  Tomoko
External Organizations;

/persons/resource/david.klein

Klein,  David
Potsdam Institute for Climate Impact Research;

Kurosawa,  Atsushi
External Organizations;

Mima,  Silvana
External Organizations;

Muratori,  Matteo
External Organizations;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PIKpublic verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Bauer, N., Rose, S. K., Fujimori, S., van Vuuren, D. P., Weyant, J., Wise, M., Cui, Y., Daioglou, V., Gidden, M. J., Kato, E., Kitous, A., Leblanc, F., Sands, R., Sano, F., Strefler, J., Tsutsui, J., Bibas, R., Fricko, O., Hasegawa, T., Klein, D., Kurosawa, A., Mima, S., Muratori, M. (2020): Global energy sector emission reductions and bioenergy use: overview of the bioenergy demand phase of the EMF-33 model comparison. - Climatic Change, 163, 3, 1553-1568.
https://doi.org/10.1007/s10584-018-2226-y


Zitierlink: https://publications.pik-potsdam.de/pubman/item/item_24780
Zusammenfassung
We present an overview of results from 11 integrated assessment models (IAMs) that participated in the 33rd study of the Stanford Energy Modeling Forum (EMF-33) on the viability of large-scale deployment of bioenergy for achieving long-run climate goals. The study explores future bioenergy use across models under harmonized scenarios for future climate policies, availability of bioenergy technologies, and constraints on biomass supply. This paper provides a more transparent description of IAMs that span a broad range of assumptions regarding model structures, energy sectors, and bioenergy conversion chains. Without emission constraints, we find vastly different CO2 emission and bioenergy deployment patterns across models due to differences in competition with fossil fuels, the possibility to produce large-scale bio-liquids, and the flexibility of energy systems. Imposing increasingly stringent carbon budgets mostly increases bioenergy use. A diverse set of available bioenergy technology portfolios provides flexibility to allocate bioenergy to supply different final energy as well as remove carbon dioxide from the atmosphere by combining bioenergy with carbon capture and sequestration (BECCS). Sector and regional bioenergy allocation varies dramatically across models mainly due to bioenergy technology availability and costs, final energy patterns, and availability of alternative decarbonization options. Although much bioenergy is used in combination with CCS, BECCS is not necessarily the driver of bioenergy use. We find that the flexibility to use biomass feedstocks in different energy sub-sectors makes large-scale bioenergy deployment a robust strategy in mitigation scenarios that is surprisingly insensitive with respect to reduced technology availability. However, the achievability of stringent carbon budgets and associated carbon prices is sensitive. Constraints on biomass feedstock supply increase the carbon price less significantly than excluding BECCS because carbon removals are still realized and valued. Incremental sensitivity tests find that delayed readiness of bioenergy technologies until 2050 is more important than potentially higher investment costs.