???ENUM_LANGUAGE_JA???
 
???mainMenu_lnkPrivacyPolicy??? ???mainMenu_lnkPolicy???

???ViewItemPage???


???ENUM_STATE_RELEASED???

???ENUM_GENRE_ARTICLE???

Self-organized multistability in the forest fire model

???ViewItemOverview_lblSpecificAuthorsSection???
/persons/resource/Diego.Rybski

Rybski,  Diego
Potsdam Institute for Climate Impact Research;

Butsic,  Van
External Organizations;

Kantelhardt,  Jan W.
External Organizations;

???ViewItemOverview_lblExternalResourceSection???
???ViewItemOverview_noExternalResourcesAvailable???
???ViewItemOverview_lblRestrictedFulltextSection???
???ViewItemOverview_noRestrictedFullTextsAvailable???
???ViewItemOverview_lblFulltextSection???
???ViewItemOverview_noFullTextsAvailable???
???ViewItemOverview_lblSupplementaryMaterialSection???
???ViewItemOverview_noSupplementaryMaterialAvailable???
???ViewItemOverview_lblCitationSection???

Rybski, D., Butsic, V., Kantelhardt, J. W. (2021): Self-organized multistability in the forest fire model. - Physical Review E, 104, 1, L012201.


???ViewItemOverview_lblCiteAs???: https://publications.pik-potsdam.de/pubman/item/item_25697
???ViewItemOverview_lblAbstractSection???
The forest fire model in statistical physics represents a paradigm for systems close to but not completely at criticality. For large tree growth probabilities p we identify periodic attractors, where the tree density ρ oscillates between discrete values. For lower p this self-organized multistability persists with incrementing numbers of states. Even at low p the system remains quasiperiodic with a frequency ≈p on the way to chaos. In addition, the power-spectrum shows 1/f2 scaling (Brownian noise) at the low frequencies f, which turns into white noise for very long simulation times.