Deutsch
 
Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Blood-brain barrier permeability changes: nonlinear analysis of ECoG based on wavelet and machine learning approaches

Urheber*innen

Semenova,  Nadezhda
External Organizations;

Segreev,  Konstantin
External Organizations;

Slepnev,  Andrei
External Organizations;

Runnova,  Anastasiya
External Organizations;

Zhuravlev,  Maxim
External Organizations;

Blokhina,  Inna
External Organizations;

Dubrovsky,  Alexander
External Organizations;

Klimova,  Maria
External Organizations;

Terskov,  Andrey
External Organizations;

Semyachkina-Glushkovskaya,  Oxana
External Organizations;

/persons/resource/Juergen.Kurths

Kurths,  Jürgen
Potsdam Institute for Climate Impact Research;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PIKpublic verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Semenova, N., Segreev, K., Slepnev, A., Runnova, A., Zhuravlev, M., Blokhina, I., Dubrovsky, A., Klimova, M., Terskov, A., Semyachkina-Glushkovskaya, O., Kurths, J. (2021): Blood-brain barrier permeability changes: nonlinear analysis of ECoG based on wavelet and machine learning approaches. - European Physical Journal Plus, 136, 7, 736.
https://doi.org/10.1140/epjp/s13360-021-01715-2


Zitierlink: https://publications.pik-potsdam.de/pubman/item/item_26415
Zusammenfassung
The blood-brain barrier plays a decisive role in protecting the brain from toxins and pathogens. The ability to analyze the BBB opening (OBBB) is crucial for the treatment of many brain diseases, but it is very difficult to noninvasively monitor OBBB. In this paper we analyze the EEG series of healthy rats in free behaviour and after music-induced OBBB. The research is performed using two completely different methods based on wavelet analysis and machine learning approach. The wavelet-approach demonstrates quantitative changes in the oscillatory structure in EEG signals after music listening, namely, a decrease in the number of patterns to the frequency band Δf[1;2.5] Hz. Using methods of machine learning we analyze the number of fragments of EEG realizations recognized as OBBB. After the music impact the number of recognized OBBB is increased in about 50%. Both methods enable us to recognize OBBB and are in a good agreement with each other. The comparative analysis was carried out using F-measures and ROC-curves.