Deutsch
 
Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
 ZurückNächste 

Freigegeben

Zeitschriftenartikel

The Multiplex Decomposition: An Analytic Framework for Multilayer Dynamical Networks

Urheber*innen

Berner,  Rico
External Organizations;

Mehrmann,  Volker
External Organizations;

/persons/resource/eckehard.schoell

Schöll,  Eckehard
Potsdam Institute for Climate Impact Research;

Yanchuk,  Serhiy
External Organizations;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Berner, R., Mehrmann, V., Schöll, E., Yanchuk, S. (2021): The Multiplex Decomposition: An Analytic Framework for Multilayer Dynamical Networks. - SIAM Journal on Applied Dynamical Systems, 20, 4, 1752-1772.
https://doi.org/10.1137/21M1406180


Zitierlink: https://publications.pik-potsdam.de/pubman/item/item_26489
Zusammenfassung
Multiplex networks are networks composed of multiple layers such that the number of nodes in all
layers is the same and the adjacency matrices between the layers are diagonal. We consider the
special class of multiplex networks where the adjacency matrices for each layer are simultaneously
triagonalizable. For such networks, we derive the relation between the spectrum of the multiplex
network and the eigenvalues of the individual layers. As an application, we propose a generalized
master stability approach that allows for a simplified, low-dimensional description of the stability
of synchronized solutions in multiplex networks. We illustrate our result with a duplex network
of FitzHugh--Nagumo oscillators. In particular, we show how interlayer interaction can lead to
stabilization or destabilization of the synchronous state. Finally, we give explicit conditions for the
stability of synchronous solutions in duplex networks of linear diffusive systems.