English
 
Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

The role of cyclonic activity in tropical temperature-rainfall scaling

Authors
/persons/resource/traxl

Traxl,  Dominik
Potsdam Institute for Climate Impact Research;

/persons/resource/Niklas.Boers

Boers,  Niklas
Potsdam Institute for Climate Impact Research;

Rheinwalt,  Aljoscha
External Organizations;

Bookhagen,  Bodo
External Organizations;

External Ressource
No external resources are shared
Fulltext (public)

s41467-021-27111-z.pdf
(Publisher version), 3MB

Supplementary Material (public)
There is no public supplementary material available
Citation

Traxl, D., Boers, N., Rheinwalt, A., Bookhagen, B. (2021): The role of cyclonic activity in tropical temperature-rainfall scaling. - Nature Communications, 12, 6732.
https://doi.org/10.1038/s41467-021-27111-z


Cite as: https://publications.pik-potsdam.de/pubman/item/item_26768
Abstract
The attribution of changing intensity of rainfall extremes to global warming is a key challenge of climate research. From a thermodynamic perspective, via the Clausius-Clapeyron relationship, rainfall events are expected to become stronger due to the increased water-holding capacity of a warmer atmosphere. Here, we employ global, 1-hourly temperature and 3-hourly rainfall data to investigate the scaling between temperature and extreme rainfall. Although the Clausius-Clapeyron scaling of +7% rainfall intensity increase per degree warming roughly holds on a global average, we find very heterogeneous spatial patterns. Over tropical oceans, we reveal areas with consistently strong negative scaling (below −40%∘C−1). We show that the negative scaling is due to a robust linear correlation between pre-rainfall cooling of near-surface air temperature and extreme rainfall intensity. We explain this correlation by atmospheric and oceanic dynamics associated with cyclonic activity. Our results emphasize that thermodynamic arguments alone are not enough to attribute changing rainfall extremes to global warming. Circulation dynamics must also be thoroughly considered.