Deutsch
 
Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Investigation into the coherence of flame intensity oscillations in a model multi-element rocket combustor using complex networks

Urheber*innen

Kasthuri,  Praveen
External Organizations;

Krishnan,  Abin
External Organizations;

Gejji,  Rohan
External Organizations;

Anderson,  William
External Organizations;

/persons/resource/Marwan

Marwan,  Norbert
Potsdam Institute for Climate Impact Research;

/persons/resource/Juergen.Kurths

Kurths,  Jürgen
Potsdam Institute for Climate Impact Research;

Sujith,  R. I.
External Organizations;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PIKpublic verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Kasthuri, P., Krishnan, A., Gejji, R., Anderson, W., Marwan, N., Kurths, J., Sujith, R. I. (2022): Investigation into the coherence of flame intensity oscillations in a model multi-element rocket combustor using complex networks. - Physics of Fluids, 34, 3, 034107.
https://doi.org/10.1063/5.0080874


Zitierlink: https://publications.pik-potsdam.de/pubman/item/item_26982
Zusammenfassung
Capturing the complex spatiotemporal flame dynamics inside a rocket combustor is essential to validate high-fidelity simulations for developing high-performance rocket engines. Utilizing tools from a complex network theory, we construct positively and negatively correlated weighted networks from methylidyne (CH*) chemiluminescence intensity oscillations for different dynamical states observed during the transition to thermoacoustic instability (TAI) in a subscale multi-element rocket combustor. We find that the distribution of network measures quantitatively captures the extent of coherence in the flame dynamics. We discover that regions with highly correlated flame intensity oscillations tend to connect with other regions exhibiting highly correlated flame intensity oscillations. This phenomenon, known as assortative mixing, leads to a core group (a cluster) in the flow-field that acts as a “reservoir” for coherent flame intensity oscillations. Spatiotemporal features described in this study can be used to understand the self-excited flame response during the transition to TAI and validate high-fidelity simulations essential for developing high-performance rocket engines.