???ENUM_LANGUAGE_JA???
 
???mainMenu_lnkPrivacyPolicy??? ???mainMenu_lnkPolicy???

???ViewItemPage???


???ENUM_STATE_RELEASED???

???ENUM_GENRE_ARTICLE???

Master Memory Function for Delay-Based Reservoir Computers With Single-Variable Dynamics

???ViewItemOverview_lblSpecificAuthorsSection???

Köster,  Felix
External Organizations;

/persons/resource/yanchuk

Yanchuk,  Serhiy       
Potsdam Institute for Climate Impact Research;

Lüdge,  Kathy
External Organizations;

???ViewItemOverview_lblExternalResourceSection???
???ViewItemOverview_noExternalResourcesAvailable???
???ViewItemOverview_lblRestrictedFulltextSection???
???ViewItemOverview_noRestrictedFullTextsAvailable???
???ViewItemOverview_lblFulltextSection???

27572oa.pdf
(???ENUM_CONTENTCATEGORY_publisher-version???), 2???ViewItemMedium_lblFileSizeMB???

???ViewItemOverview_lblSupplementaryMaterialSection???
???ViewItemOverview_noSupplementaryMaterialAvailable???
???ViewItemOverview_lblCitationSection???

Köster, F., Yanchuk, S., Lüdge, K. (2024): Master Memory Function for Delay-Based Reservoir Computers With Single-Variable Dynamics. - IEEE Transactions on Neural Networks and Learning Systems, 35, 6, 7712-7725.
https://doi.org/10.1109/TNNLS.2022.3220532


???ViewItemOverview_lblCiteAs???: https://publications.pik-potsdam.de/pubman/item/item_27572
???ViewItemOverview_lblAbstractSection???
We show that many delay-based reservoir computers considered in the literature can be characterized by a universal master memory function (MMF). Once computed for two independent parameters, this function provides linear memory capacity for any delay-based single-variable reservoir with small inputs. Moreover, we propose an analytical description of the MMF that enables its efficient and fast computation. Our approach can be applied not only to single-variable delay-based reservoirs governed by known dynamical rules, such as the Mackey–Glass or Stuart–Landau-like systems, but also to reservoirs whose dynamical model is not available.