Deutsch
 
Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Switching from active to non-active states in a birhythmic conductance-based neuronal model under electromagnetic induction

Urheber*innen

Tagne Nkounga,  I. B.
External Organizations;

Messee Goulefack,  L.
External Organizations;

Yamapi,  R.
External Organizations;

/persons/resource/Juergen.Kurths

Kurths,  Jürgen
Potsdam Institute for Climate Impact Research;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PIKpublic verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Tagne Nkounga, I. B., Messee Goulefack, L., Yamapi, R., Kurths, J. (2023): Switching from active to non-active states in a birhythmic conductance-based neuronal model under electromagnetic induction. - Nonlinear Dynamics, 111, 771-788.
https://doi.org/10.1007/s11071-022-07842-4


Zitierlink: https://publications.pik-potsdam.de/pubman/item/item_27969
Zusammenfassung
We consider a conductance-based neuronal model under the action of electromagnetic induction on the membrane potential. We focus on the impact of the magnetic flux on the membrane potential using theoretical methods (such as the harmonic and energy balance methods) and numerical methods (such as the bifurcation diagram and Lyapunov exponent). The strength of the electromagnetic induction is considered as the control parameter. Thus, the system can switch from bistable to monostable behavior at the first critical value of the control parameter. This is done by suppressing the active mode of the neuron and maintaining subthreshold mode until it achieved a second critical value of the control parameter for a quiescent mode. Improving the conductance-based neuronal model by adding electromagnetic induction effects relates different steps in the generation of complex forms of action potential (depolarization) such as spiking, bursting, chaos; and the regulation of the system by the switching to subthreshold oscillations (repolarization) or to a stable state (quiescent state) after a brief phase of the dynamic below the quiescent state (hyperpolarization).