Deutsch
 
Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Limiting red meat availability in a university food service setting reduces food-related greenhouse gas emissions by one-third

Urheber*innen
/persons/resource/Nathalie.Lambrecht

Lambrecht,  Nathalie
Potsdam Institute for Climate Impact Research;

Hoey,  Lesli
External Organizations;

Bryan,  Alex
External Organizations;

Heller,  Martin
External Organizations;

Jones,  Andrew D.
External Organizations;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PIKpublic verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Lambrecht, N., Hoey, L., Bryan, A., Heller, M., Jones, A. D. (2023): Limiting red meat availability in a university food service setting reduces food-related greenhouse gas emissions by one-third. - Climatic Change, 176, 67.
https://doi.org/10.1007/s10584-023-03543-y


Zitierlink: https://publications.pik-potsdam.de/pubman/item/item_28431
Zusammenfassung
Higher Education Institutions (HEI) can contribute to climate change mitigation through reductions in food-related greenhouse gas (GHG) emissions. We examined the impact of serving a low-red meat menu 1 day per week on the GHG emissions associated with residential dining halls at a university setting in the USA. We also estimated the potential impacts of replacing meat with lower-emission proteins on GHG emissions and cost using hypothetical substitution scenarios. Food items procured to prepare daily meals were linked to GHG emissions values. During one academic term, a “Sustainable Mondays” intervention was implemented, wherein dining halls reduced red meat dishes on Mondays. We compared GHG emissions on Mondays with Wednesdays. We then developed substitution scenarios that replaced beef, red meat, or all meats and fish with lower-emission protein sources on a per gram of protein basis. Overall, the University dining service food procurement emitted 4661 metric tonnes CO2-eq in one academic term, of which 81% came from animal-source foods. Dining halls reduced red meat procurement by 81% on “Sustainable Mondays,” resulting in 240 fewer metric tonnes of CO2-eq (− 31% compared to Wednesdays). We estimated that replacing red meat with lower-emission meat and red meat/poultry with fish or plant-based proteins could reduce GHG emissions by 14–46%. Our study suggests there is considerable potential for HEI to reduce climate impacts through simple replacements of red meat with lower-emission proteins. Achieving the necessary scales of meat reduction in HEI likely requires institution-wide transformation with changes to food procurement, dining hall choice architecture, and education for students and staff.