Deutsch
 
Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Similar Master Stability Functions for Different Coupling Schemes in Basic Chaotic Systems

Urheber*innen

Dayani,  Zahra
External Organizations;

Parastesh,  Fatemeh
External Organizations;

Jafari,  Sajad
External Organizations;

/persons/resource/eckehard.schoell

Schöll,  Eckehard
Potsdam Institute for Climate Impact Research;

/persons/resource/Juergen.Kurths

Kurths,  Jürgen
Potsdam Institute for Climate Impact Research;

Sprott,  Julien Clinton
External Organizations;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PIKpublic verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Dayani, Z., Parastesh, F., Jafari, S., Schöll, E., Kurths, J., Sprott, J. C. (2023): Similar Master Stability Functions for Different Coupling Schemes in Basic Chaotic Systems. - International Journal of Bifurcation and Chaos, 33, 10, 2350122.
https://doi.org/10.1142/S0218127423501225


Zitierlink: https://publications.pik-potsdam.de/pubman/item/item_28941
Zusammenfassung
Tools Share Recommend to Library Abstract Synchronization is a prominent phenomenon in coupled chaotic systems. The master stability function (MSF) is an approach that offers the prerequisites for the stability of complete synchronization, which is dependent on the coupling configuration. In this paper, some basic chaotic systems with the general form of the Sprott-A, Sprott-B, Sprott-D, Sprott-F, Sprott-G, Sprott-O, and Jerk systems are considered. For each system, their parametric form is designed, and constraints required to have similar MSFs in different coupling schemes are determined. Then, the parameters of the designed chaotic systems are found through an exhaustive computer search seeking chaotic solutions. The simplest cases found in this way are introduced, and similar synchronization patterns are confirmed numerically.