Deutsch
 
Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Technological innovation enables low cost climate change mitigation

Urheber*innen

Creutzig,  Felix
External Organizations;

/persons/resource/hilaire

Hilaire,  Jérôme
Potsdam Institute for Climate Impact Research;

Nemet,  Gregory
External Organizations;

/persons/resource/mhansen

Müller-Hansen,  Finn
Potsdam Institute for Climate Impact Research;

Minx,  Jan C.
External Organizations;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PIKpublic verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Creutzig, F., Hilaire, J., Nemet, G., Müller-Hansen, F., Minx, J. C. (2023): Technological innovation enables low cost climate change mitigation. - Energy Research and Social Science, 105, 103276.
https://doi.org/10.1016/j.erss.2023.103276


Zitierlink: https://publications.pik-potsdam.de/pubman/item/item_29415
Zusammenfassung
Scenarios from integrated assessment models play a central role in helping policymakers envisage pathways to limit global warming to well below 2 °C. We demonstrate that many models maintain a preference for inefficient combustion, in particular by relying on coal and bioenergy. In contrast to recent evidence from innovation studies, scenarios are optimistic on deployment of lumpy energy-systems technologies, such as carbon capture and storage, while insufficiently reflecting empirically observed innovation dynamics in more granular technologies such as solar photovoltaics. Our analysis shows that two key options for rapid decarbonization remain systematically undersampled in models that underpin IPCC scenarios: A) strong growth in intermittent renewables, in particular solar PV, together with electrification of sectors; and B) widespread adoption of efficient end use technologies enabling high service provision at low levels of energy demand. A combination of continued PV growth and sector coupling with low to medium energy demand (a corridor of 250 to 500 EJ of primary energy) would render carbon neutrality by 2050 feasible, thus enabling near-term cost-effective climate change mitigation and reducing the need for carbon dioxide removal in the 2nd half of the century. Models would benefit from updated cost assumptions, higher resolution on granular end-use technologies, higher resolution on sector coupling, and an overall consideration of demand-side solutions. Such updates – of which some are starting to be explored by modeling teams - are likely to demonstrate that some mitigation pathways are cost saving, rather than costly.