English
 
Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Dynamics of a time-delayed relay system

Authors

Illing,  Lucas
External Organizations;

Ryan,  Pierce
External Organizations;

/persons/resource/andreas.amann

Amann,  Andreas
Potsdam Institute for Climate Impact Research;

External Ressource
No external resources are shared
Fulltext (public)
There are no public fulltexts stored in PIKpublic
Supplementary Material (public)
There is no public supplementary material available
Citation

Illing, L., Ryan, P., Amann, A. (2024): Dynamics of a time-delayed relay system. - Physical Review E, 109, 1, 014223.
https://doi.org/10.1103/PhysRevE.109.014223


Cite as: https://publications.pik-potsdam.de/pubman/item/item_29576
Abstract
We study the dynamics of a piecewise-linear second-order delay differential equation that is representative of feedback systems with relays (switches) that actuate after a fixed delay. The system under study exhibits strong multirhythmicity, the coexistence of many stable periodic solutions for the same values of the parameters. We present a detailed study of these periodic solutions and their bifurcations. Starting from an integrodifferential model, we show how to reduce the system to a set of finite-dimensional maps. We then demonstrate that the parameter regions of existence of periodic solutions can be understood in terms of discontinuity-induced bifurcations and their stability is determined by smooth bifurcations. Using this technique, we are able to show that slowly oscillating solutions are always stable if they exist. We also demonstrate the coexistence of stable periodic solutions with quasiperiodic solutions.