English
 
Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

ResoNet: Robust and Explainable ENSO Forecasts with Hybrid Convolution and Transformer Networks

Authors

Lyu,  Pumeng
External Organizations;

Tang,  Tao
External Organizations;

Ling,  Fenghua
External Organizations;

Luo,  Jing-Jia
External Organizations;

/persons/resource/Niklas.Boers

Boers,  Niklas
Potsdam Institute for Climate Impact Research;

Ouyang,  Wanli
External Organizations;

Bai,  Lei
External Organizations;

External Ressource
No external resources are shared
Fulltext (public)
There are no public fulltexts stored in PIKpublic
Supplementary Material (public)
There is no public supplementary material available
Citation

Lyu, P., Tang, T., Ling, F., Luo, J.-J., Boers, N., Ouyang, W., Bai, L. (in press): ResoNet: Robust and Explainable ENSO Forecasts with Hybrid Convolution and Transformer Networks. - Advances in Atmospheric Sciences.
https://doi.org/10.1007/s00376-024-3316-6


Cite as: https://publications.pik-potsdam.de/pubman/item/item_29933
Abstract
There is no abstract available